
A Sentence Meaning Based Alignment Method for
Parallel Text Corpora Preparation.

Krzysztof Wołk, Krzysztof Marasek

Department of Multimedia
Polish Japanese Institute of Information Technology, Koszykowa 86, 02-008 Warsaw

kwolk@pjwstk.edu.pl

Abstract. Text alignment is crucial to the accuracy of Machine Translation
(MT) systems, some NLP tools or any other text processing tasks requiring
bilingual data. This research proposes a language independent sentence
alignment approach based on Polish (not position-sensitive language) to English
experiments. This alignment approach was developed on the TED Talks corpus,
but can be used for any text domain or language pair. The proposed approach
implements various heuristics for sentence recognition. Some of them value
synonyms and semantic text structure analysis as a part of additional
information. Minimization of data loss was ensured. The solution is compared
to other sentence alignment implementations. Also an improvement in MT
system score with text processed with described tool is shown.

1 Introduction

Before a parallel corpus can be used for any processing, the sentences must be
aligned. Sentences in the raw corpus are mostly misaligned, with translation lines
whose placement does not correspond to the text lines in the source language.
Moreover, some sentences may have no corresponding translation in the corpus at all.
The corpus might also contain poor or indirect translations, making alignment
difficult. Thus, alignment is crucial to many systems accuracy [1]. Sentence
alignment must also be computationally feasible in order to be of practical use in
various applications [2]. As a result, sentence alignment poses a significant challenge.

The Polish language is a particular challenge to such tools. It is a very complicated
West-Slavic language with complex elements and grammatical rules. In addition, the
Polish language has a large vocabulary due to many endings and prefixes changed by
word declension. These characteristics have a significant effect on the requirements
for the data and the data structure.

In addition, English is a position-sensitive language. The syntactic order (the order
of words in a sentence) plays a very significant role, and the language has very
limited inflection of words (e.g., due to the lack of declension endings). The word
position in an English sentence is often the only indicator of the meaning. The
sentence order follows the Subject-Verb-Object (SVO) schema, with the subject
phrase preceding the predicate.

On the other hand, no specific word order is imposed in Polish, and the word order
has little effect on the meaning of a sentence. The same thought can be expressed in
several ways. For example, the sentence “I bought myself a new car.” can be written
in Polish as one of the following: “Kupiłem sobie nowy samochód”;” Nowy
samochód sobie kupiłem.”; ”Sobie kupiłem nowy samochód.”; ”Samochód nowy
sobie kupiłem.”. It must be noted that such differences exist in many language pairs
and need somehow to be dealt with, what is done in this research.

This paper proposes a language independent sentence alignment method that has
been applied to Polish-English parallel corpora. First, the method is described. Next,
an alignment metric is discussed. A quality comparison of this method to other
alignment methods is then made using data from experiments. Lastly, conclusions are
drawn.

The dataset used for this research was the Translanguage English Database (TED)
[12], provided by Fondazione Bruno Kessler (FBK) [17]. Vocabulary sizes of the
English and Polish texts in TED are disproportionate. There are 41,684 unique
English words and 88,158 unique Polish words. This also presents a challenge for
SMT systems.

2 Literature Overview

Early attempts at automatically aligning sentences for parallel corpora were based on
sentence lengths, together with vocabulary alignment [19]. Brown’s method [20] was
based on measuring sentence length by the number of words. Gale and Church [21]
measured the number of characters in sentences. Other researchers continued
exploring various methods of combining sentence length statistics with alignment of
vocabularies [22, 23].

Several text aligners implementing these methods are currently available, including
Bleualign, which is an open source project developed by the University of Zurich. In
addition to parallel texts, Bleualign requires a translation of one of the texts. It uses
the length-based Bilingual Evaluation Understudy (BLEU) similarity metric to align
the texts [11].

The Hunalign tool is another open source tool, developed by the Media Research
Center. Based on Gale and Church’s method, it uses sentence lengths and, optionally,
a dictionary to align texts in two languages strictly on a sentence level. It does not
address sentence-ordering issues [10].

ABBYY Aligner is a commercial product developed by the ABBYY Group. This
product reportedly uses proprietary word databases to align text portions of sentences
based on their meaning. [8]

Unitex Aligner [9] is an open source project primarily developed by the University
of Paris-Est Marne-la-Vallée (France). It uses the XAlign tool [18], which uses
character lengths at the paragraph and sentence level for text alignment [24].

3 Proposed Sentence Aligner

A sentence aligner was designed to find an English translation of each Polish line in a
corpus and place it in the correct place in the English file. This aligner was
implemented as a Python script. We assume that each line in a text file represents one
full sentence.

Our first concept is to use the Google Translator Application Programming
Interface (API) for lines for which an English translation does not exist and also for
comparison between the original and translated texts. The second concept is based on
web crawling, using Google Translator, Bing Translator, and Babylon translator.
These can work in a parallel manner to improve performance. In addition, each
translator can work in many instances. Our approach can also accommodate a user-
provided translation file in lieu of crowd sourcing.

Our strategy is to find a correct translation of each Polish line aided by Google
Translator or another translation engine. We translate all lines of the Polish file
(src.pl) with Google Translator and put each line translation in an intermediate
English translation file (src.trans). This intermediate translation helps us find the
correct line in the English translation file (src.en) and put it in the correct position.

In reality, the actual solution is more complex. Suppose that we choose one of the
English data lines as the most similar line to the specific translated line and that its
similarity rate is high enough to be accepted as the translation. This line can be more
similar to the next line of src.trans, so that the similarity rate of this selected line and
the next line of src.trans is higher. For example, consider the sentences and their
similarity rating in Table 1.

Table 1. Example Similarity Ratings

src.trans src.en Sim.
I go to school every

day.
I like going to school

every day. 0.60

I go to school every
day.

I do not go to school
every day. 0.70

I go to school every
day. We will go tomorrow. 0.30

I don't go to school
every day.

I like going to school
every day. 0.55

I don't go to school
every day.

I do not go to school
every day. 0.95

I don't go to school
every day. We will go tomorrow. 0.30

In this situation, we should select “I do not go to school every day.” from src.en

instead of “I don't go to school every day” from src.trans, and not “I go to school
every day.”. So, we should consider the similarity of a selected line with the next lines
of src.trans to make the best possible selection in the alignment process.

There are additional complexities that must be addressed. Comparing the src.trans
lines with the src.en lines is not easy, and it becomes harder when we want to use the
similarity rate to choose the correct, real-world translation.

There are many strategies to compare two sentences. We can split each sentence
into its words and find the number of words in both sentences. However, this
approach has some problems. For example, let us compare “It is origami.” to these
sentences: “The common theme what makes it origami is folding is how we create the
form.”; “This is origami.”

With this strategy, the first sentence is more similar because it contains all 3
words. However, it is clear that the second sentence is the correct choice. We can
solve this problem by dividing the number of words in both sentences by the number
of total words in the sentences. However, counting stop words in the intersection of
sentences sometimes causes incorrect results. So, we remove these words before
comparing two sentences.

Another problem is that sometimes we find stemmed words in sentences, for
example “boy” and “boys.” Despite the fact that these two words should be counted
as similarity of two sentences, with this strategy, these words are not counted.

The next comparison problem is the word order in sentences. In Python there are
other ways for comparing strings that are better than counting intersection lengths.
The Python “difflib” library for string comparison contains a function that first finds
matching blocks of two strings. For example, we can use difflib to find matching
blocks in the strings "abxcd" and "abcd".

Difflib’s “ratio” function divides the length of matching blocks by the length of
two strings, and returns a measure of the sequences’ similarity as a float value in the
range [0, 1]. This measure is 2.0*M / T, where T is the total number of elements in
both sequences, and M is the number of matches. Note that this measure is 1.0 if the
sequences are identical, and 0.0 if they have nothing in common. Using this function
to compare strings instead of counting similar words helps us to solve the problem of
the similarity of “boy” and “boys”. It also solves the problem of considering the
position of words in sentences.

Another problem in comparing lines is synonyms. For example, in these
sentences: “I will call you tomorrow.”; “I would call you tomorrow.”

If we want to know if these sentences are the same, we should know that “will”
and “would” can be used interchangeably.

We used the NLTK Python module and WordNet® to find synonyms for each
word and to use these synonyms in comparing sentences. Using synonyms of each
word, we created multiple sentences from each original sentence.

For example, suppose that the word “game” has the synonyms: “play”, “sport”,
“fun”, “gaming”, “action”, and “skittle”. If we use, for example, the sentence “I do
not like game.”, we create the following sentences: “I do not like play.”; “I do not
like sport.”; “I do not like fun.”; “I do not like gaming.”; “I do not like action.”; “I do
not like skittle.”. We must do the same every word in a sencence.

Next, we try to find the best score by comparing all these sentences instead of just
comparing the main sentence. One issue is that this type of comparison takes too
much time, because we need to do many comparisons for each selection.

Difflib has other functions (in SequenceMatcher and Diff class) to compare strings
that are faster than described solution, but their accuracy is worse. To overcome all

these problems and obtain the best results, we consider two criteria: the speed of the
comparison function and the comparison acceptance rate.

To obtain the best results, our script provides users with the ability to have
multiple functions with multiple acceptance rates. Fast functions with lower quality
results are tested first. If they can find results with a very high acceptance rate, we
accept their selection. If the acceptance rate is not sufficient, we can use slower but
higher accuracy functions. The user can configure these rates manually and test the
resulting quality to get the best results. All are well described in documentation [25].

Because we used the Google Translator API and comparison functions that are not
specific to any language, the program should be able to align similarly structured
languages that are supported by Google Translator with English. Alignment between
a language pair not included in Google Translator or WordNet would require use of a
different lexical library for synonyms or not using some comparison functions.

Information about each data domain would require adapting parameters in order to
provide the best alignment. In general, texts is associated with a domain, i.e. a
particular subject area and mode of writing, e.g., a political science essay [13]. As
discussed in [14], texts from different domains are likely to use words with different
meanings. If a domain is ignored, this can lead to translations that are misleading
[26].

The proposed method automatically creates text corpora. Some other aligners
work in only a semi-automatic or fully manual manner. If they are unable to align or
there is no translation, they leave an empty line. Clearly, this result in problems and
some information are lost in process, which does not occur in our solution.

4 Sentence Alignment Metric

We developed a special metric to evaluate aligner quality and tuned its parameters
during this research. Special metric was needed to evaluate sentences properly
aligned but built from synonyms or with different phrase order. For an aligned
sentence, we give 1 point. For a misaligned sentence, we give a -0.2 points penalty.
For web service translations, we give 0.4 points. For translations due to disproportion
between input files, we give 1 point (when one of two files included more sentences).
The score is normalized to fit between 1 and 100. A higher value is better. A floor
function can be used to round the score to an integer value. Point weights were
determined by empirical research and can be easily adjusted if needed. The score S is
defined as:

 (1)

where A is the number of aligned sentences, M is the number of misaligned
sentences, T is the number of translated sentences, D is the number of lines not found
in both language files (one file can contain some sentences that do not exist in the
other one), and L is the total number of output lines.

Some additional scoring algorithms were also implemented. These are more suited
for comparing language translation quality. We added the BLEU and native

S = floor(20(5A−M + 2T + 5|D|
L

)

implementations of Translation Edit Rate (TER) and Character Edit Rate (CER) by
using pycdec and the Rank-based Intuitive Bilingual Evaluation Measure (RIBES).
BLEU and TER are well-described in the literature [4-5]. RIBES is an automatic
evaluation metric for machine translation, developed in NTT Communication
Science Labs [6].

The pycdec module is a Python interface to the cdec decoding and alignment
algorithms [15, 16]. The BLEU metric compares phrases from a source text with
reference translations of the text, using weighted averages of the resulting matches. It
has been shown that BLEU performs well in comparison to reference human
translations. BLEU is defined in [3] in terms of the n-gram precision (using n-grams
up to length N) 𝑝! and weights 𝑤! (positive only) whose sum is one:

∑
=

=
N

n
nnB pwPBLEU

0

)logexp((2)

Here, 𝑃! is the brevity penalty, which is given by [3] as:

PB = {
1,c > r

e
(1−r

c
)
,c ≤ r

 (3)

In the equation above, c is the candidate phrase translation length, and r is the

length of the reference translation phrase, e is Euler’s constant. [3].
The TER metric is intended to capture the quality of essential meaning and fluency

of SMT system translations. It measures human translator edits required for a machine
translation to match a reference translation. TER accounts for word substitutions,
word insertions and deletions, and phrase and word order modifications [5].

We use these algorithms to generate likelihood scores for two sentences, to choose
the best one in the alignment process. For this purpose, we used cdec and pycdec.
cdec is a decoder, aligner, and learning framework for statistical machine translation
and similar structured prediction models. It provides translation and alignment
modeling based on finite-state transducers and synchronous context-free grammars,
as well as implementations of several parameter-learning algorithms [15, 16].

pycdec is a Python module for the cdec decoder. It enables Python coders to use
cdec’s fast C++ implementation of core finite-state and context-free inference
algorithms for decoding and alignment. The high-level interface allows developers to
build integrated MT applications that take advantage of the rich Python ecosystem
without sacrificing computational performance. The modular architecture of pycdec
separates search space construction, rescoring, and inference.

cdec includes implementations of the basic evaluation metrics (BLEU, TER and
CER), exposed in Python via the cdec.score module. For a given (reference,
hypothesis) pair, sufficient statistics vectors (SufficientStats) can be computed. These
vectors are then summed for all sentences in the corpus, and the final result is
converted into a real-valued score.

Before aligning a big data file, it is important to determine the proper comparators
and acceptance rates for each one. Files of 1000 – 10,000 lines result in the best
performance. We recommend first evaluating each comparison method separately,
and then combining the best ones in a specific scenario. For this purpose, we
recommend using the binary search method in order to determine the best threshold
factor value.

5 Comparison Experiments

Experiments were performed to compare the performance of the proposed method
with several other sentence alignment implementations on the data found in [7], using
the metric defined earlier. The Polish data in the Translanguage English Database
(TED) lectures (approximately 15 MB) includes over 2 million words that are not
tokenized.

The additional aligners, all created to develop parallel corpora, used in this
experiment were: Bleualign, hunalign, ABBYY Aligner, Wordfast Aligner, and
Unitex Aligner. The performance of the aligners was scored using the sentence
alignment metric described in Section 3. Table 2 provides the results.

Table 2. Experimental Results

Aligner Score
Proposed Method 98.94

Bleualign 96.89
Hunalign 97.85

ABBYY Aligner 84.00
Wordfast Aligner 81.25

Unitex Aligner 80.65

Clearly, the first three aligners scored well. The proposed method is fully
automatic. It is important to note that Bleualign does not translate text and requires
that it be done manually.

As discussed earlier, it is important not to lose lines of text in the alignment
process. Table 3 shows the total lines resulting from the application of each alignment
method.

Table 3. Experimental Results

Aligner Lines
Human Translation 1005
Proposed Method 1005

Bleualign 974
Hunalign 982

ABBYY Aligner 866
Wordfast Aligner 843

Unitex Aligner 838

All the aligners compared, other than the proposed method, lose lines of text as
compared to a reference human translation. The proposed method lost no lines.

In purpose of showing the output quality with an independent metric we decided to
compare results with BLEU, NIST, METEOR and TER (the lower the better), in a
comparison with human B1aligned texts. Those results are presented in Table 4.

Table 4. BLEU Comparison Results

Aligner BLEU NIST MET TER % of correctness
Human Translation 100 15 100 0 100
Proposed Method 98,91 13,81 99,11 1,38 98
Bleualign 91,62 13,84 95,27 9,19 92
Hunalign 93,10 14,10 96,93 6,68 94
ABBYY Aligner 79,48 12,13 90,14 20,01 83
Wordfast Aligner 85,64 12,81 93,31 14,33 88
Unitex Aligner 82,20 12,20 92,72 16,39 86

6 Conclusions

In general, sentence alignment algorithms are very important for creating of parallel
text corpora. Most aligners are not fully automatic, but the one proposed here is,
which gives it a distinct advantage. It also allows creating a corpus when sentences
exist just in a single language. The proposed approach is also language independent
for ones with similar structure to PL or EN.

The results show that the proposed method performed very well in terms of the
metric. It also lost no lines of text, unlike the other aligners. This is critical to the end
goal of obtaining a translated text. Our alignment method also proved to provide
better score when comparing with typical machine translation metrics, and would
most likely improve MT systems output quality.

6 Acknowledgements

This work is supported by the European Community from the European Social Fund
within the Interkadra project UDA-POKL-04.01.01-00-014/10-00 and Eu-Bridge 7th
FR EU project (grant agreement n°287658).

References

1. Deng Y., Kumar S. and Byrne W., “Segmentation and alignment of parallel text for
statistical machine translation”, Natural Language Engineering, 12(4), p. 1-26, 2006.

2. Braune F. and Fraser A., “Improved Unsupervised Sentence Alignment for Symmetrical and
Asymmetrical Parallel Corpora”, Coling 2010: Poster Volume, pages 81-89, August 2010.

3. Papineni, K., Rouskos, S., Ward, T., and Zhu, W.J. “BLEU: a Method for Automatic
Evaluation of Machine Translation”, Proc. of 40th Annual Meeting of the Assoc. for
Computational Linguistics, Philadelphia, July 2002, pp. 311-318.

4. Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J., “A Study of Translation
Edit Rate with Targeted Human Annotation”, Proc. of 7th Conference of the Assoc. for
Machine Translation in the Americas, Cambridge, August 2006.

5. Levenshtein, V. I. “Binary codes with correction for deletions and insertions of the symbol
1”, Problemy Peredachi Informacii, 1965.

6. Linguistic Intelligence Research Group, NTT Communication Science Laboratories. RIBES:
Rank-based Intuitive Bilingual Evaluation Score, http://www.kecl.ntt.co.jp/icl/lirg/ribes/,
retrieved on August 7, 2013.

7. International Workshop on Spoken Language Translation (IWSLT),
http://www.iwslt2013.org/, retrieved on August 7, 2013.

8. ABBYY Aligner, http://www.abbyy.com/aligner/, retrieved on August 7, 2013.
9. Unitex/Gramlab, http://www-igm.univ-mlv.fr/~unitex/#, retrieved on August 7, 2013.
10. hunalign – sentence aligner, http://mokk.bme.hu/resources/hunalign/, retrieved on August 8,

2013.
11. Bleualign, https://github.com/rsennrich/Bleualign, retrieved on August 8, 2013.
12. Marasek, K., “TED Polish-to-English translation system for the IWSLT 2012”, Proc. of

International Workshop on Spoken Language Translation (IWSLT) 2010, Hong Kong,
December 2012.

13. Schmidt, A., Statistical Machine Translation Between New Language Pairs Using Multiple
Intermediaries (Doctoral dissertation, Thesis), 2007.

14. Specia, L., Raj, D. and Turchi, M., “Machine translation evaluate versus quality
estimation”, Machine Translation, 24:39-50, 2010.

15. Chahuneau, V., Smith, N.A., and Dyer, C., pycdec: A Python Interface to cdec. The Prague
Bulletin of Mathematical Linguistics, No. 98, 2012, pp. 51–61.

16. Dyer, C. et al.,). “cdec: A decoder, alignment, and learning framework for finite-state and
context-free translation models”, Proc. of ACL 2010 System Demonstrations (pp. 7-12).
Association for Computational Linguistics, July 2010.

17. Cettolo, M., Girardi, C., & Federico, M., “Wit3: Web inventory of transcribed and
translated talks”, Proc. of 16th Conference of the European Association for Machine
Translation (EAMT), Trento, Italy (pp. 261-268), May 2012.

18. Paumier, S., Nakamura, T., & Voyatzi, S. (2009). UNITEX, a Corpus Processing System
with Multi-Lingual Linguistic Resources. eLEX2009, 173.

19. Santos, A., “A survey on parallel corpora alignment”, MI-STAR 2011, Pages 117–128.
20. Brown, P.F., Lai, J.C., and Mercer, R.L., “Aligning sentences in parallel corpora”, Proc. of

29th Annual Meeting of the ACL, pages 169-176, Berkeley, 1991.
21. Gale, W.A., and Church, K.W., “Identifying word correspondences in parallel texts”, Proc.

of DARPA Workshop on Speech and Natual Language, pages 152-157, 1991.
22. Varga, D. et al., “Parallel corpora for medium density languages”, Proc. of the RANLP

2005, pages 590-596, 2005.
23. Braune, F. and Fraser, A., “Improved unsupervised sentence alignment for symmetrical and

asymmetrical parallel corpora”, Proc. of 23rd COLING International Conference, pages 81-
89, Beijing, China, 2010.

24. Bonhomme, P. & Romary, L., “The lingua parallel concordancing project: Managing
multilingual texts for educational purpose”, Proc. of Quinzièmes Journées Internationales
IA 95, Montpellier, 1995.

25. http://korpusy.s16874487.onlinehome-server.info/
26. Thorleuchter, D. and Van den Poel, D. “Web Mining based Extraction of Problem Solution

Ideas”, Expert Systems with Applications, 40(10), p. 3961-3969, 2013.

