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We propose that the “magic number 4” puzzle of argument structure in semantic frames across
most human languages is explained by selection pressures given inherent computational effi-
ciency properties naturally arising from fundamental combinatorial mathematics of composi-
tionality. Irrespective of language, school, or theoretical bias, linguists have long observed
that what are now generally called “semantic frames” empirically bear a maximum limit of four
core arguments per frame, for unknown reasons. We explain how this limit would automatically
emerge as a consequence of evolutionary preference for the formal equivalence class of inversion
transductions as an optimal balance between expressivity and fast tractable polynomial-time
language learning and interpretation/transduction between different representation languages.

1. Introduction

The puzzle of the magic number 4 has escaped explanation since the 1960s,
when various lexically oriented theories of what have come to be generally called
“semantic frames” emerged. Since then, dozens if not hundreds of lexical seman-
tics and “deep syntax” models have been formalized, with a high degree of ter-
minological variance that frequently obscures their mathematical commonalities.
Although details differ between theories, all draw the distinction between core
arguments of the predicate (complements) and optional arguments that provide
various classes of auxiliary information but can be omitted without affecting the
remainder of the sentence (adjuncts).

The odd thing is that these all these semantic frame theories permit no more
than four core argument roles per frame. Depending on the theory, these core
arguments—or “semantic roles”—may be labeled “agent”, “patient”, “experi-
encer”, “recipient”, and so on. Historically, many theories cite a motivation for
semantic roles as “deep cases” as opposed to the surface syntactic cases that are
marked in many languages (nominative, accusative, dative, genitive, etc.) Across
all such theories, the fact that semantic frames do not admit more than about four
core arguments has remained remarkably consistent over the decades.

In his seminal work on Functional Grammar, Dik (1978) observed that “It is
an empirical fact that nuclear predications in natural languages hardly ever have
more than four different argument positions. Even predicates with four nuclear



arguments are rare in any language. This puts interesting constraints on the variety
of predicate-frames to be found in the lexicon of any language.”

This observation is borne out by the comprehensive survey of case and valency
of Somers (1987), who reviewed numerous systems of semantic frames, across a
broad range of languages and schools of linguistic theory, from the landmark Case
Grammar of Fillmore (1968) and verb valency in dependency grammars (Tesnière,
1969), to many other related predicate-argument structures such as the theta roles
or thematic relations of GB (Chomsky, 1981). None of the lexical semantics sys-
tems reviewed by Somers ever suggested a frame with more than four participants.

The same empirical phenomenon is found in the most recent incarnations of
lexical semantics theory, from FrameNet (Baker et al., 1998) to construction gram-
mar in the various forms of Lakoff (1987), Fillmore et al. (1988), Croft (2001),
Goldberg (2006), or Steels (2012). The widely used PropBank semantic frame
annotated corpus (Palmer et al., 2005)—which, in an attempt to remain as theory-
agnostic as possible, eschews historic semantic role names like “agent” or “actor”
or “nominative” in favor of the generic ARG0, ARG1, ARG2, and so on—rarely
sees a frame with an ARG3, and almost never an ARG4 or ARG5.

Yet despite this surprisingly consistent phenomenon across decades of seman-
tic theory—from different schools of linguistics around the world, following dif-
ferent empirical methodologies and theoretical principles, studying many different
languages—few, if any, have asked where this seemingly universal magic number
4 comes from, or why it would have arisen cross-linguistically. Why should lan-
guages around the world, stemming from vastly different origins, all have evolved
to converge on the same limit of four core arguments per semantic frame?

2. Evolutionary pressures on semantic frame structure

We propose here that the mathematics of inversion transduction grammars
or ITGs (Wu, 1997) naturally explain how language evolution would drive se-
mantic frame structure to converge upon the magic number 4. Our logic rests on
fundamental combinatorial principles and computational complexity properties of
algorithms over different equivalence classes of transductions. In classic formal
language theory, a transduction is a relation between two languages, or in other
words, a set of sentence pairs. This is the bilingual generalization of a language,
which is a set of sentences. A transduction grammar or translation grammar
(TG) is a bilingual grammar that generates a transduction, by describing the re-
lations between two languages in terms of how smaller units compose into larger
units. Naturally, the components of different languages may have to be ordered
differently, which means that transduction grammars must have some way to de-
scribe the permutation of components.

A transduction rule is a formalization of a construction, or Saussurean sign.
Whatever the type of transduction grammar, one can always try to describe
more complex constructions via assemblies of multiple transduction rules. The



archetypical type of TGs are syntax-directed transduction grammars or SDTGs,
introduced by Lewis and Stearns (1968) and Aho and Ullman (1972).a SDTGs
generate syntax-directed transductions or SDTs, for which there are no polyno-
mial time algorithms for solving the recognition (bilingual parsing) problem.

Formally, an SDTG is a tuple ⟨N,Σ,∆, R, S⟩, where N is a finite nonempty
set of nonterminal symbols, Σ is a finite set of terminal symbols in the input lan-
guage L0, ∆ is a finite set of terminal symbols in the output language L1, R is a
finite nonempty set of transduction rules and S ∈ N is a designated start symbol.
There are many variant notations, but a simple and unambiguous formalization
restricts a syntax-directed transduction rule to take the form:

A → Ψ+;π0, π1, ..., πk−1

whereA ∈ N is a nonterminal symbol,Ψ+ is a nonempty sequence of k nontermi-
nals and biterminals, and πi ∈ {0, ..., k−1} is an element in a permutation vector
that specifies where Ψi is to placed after transducing. A biterminal is a pair of
symbol strings: Σ∗ ×∆∗, where at least one of the strings have to be nonempty.

Some twenty years agowe turned our statistical NLP research toward attacking
multilingual machine learning and statistical machine translation (SMT) problems
because, like many linguists, we believe theories of language should be rooted in
cross-linguistic explanatory power. In the course of our work, we introduced the
strongly restricted subclass of SDTs known as inversion transductions, and de-
veloped stochastic versions of phrasal transduction grammars along with efficient
algorithms for (a) learning stochastic phrasal ITGs from parallel training corpora,
(b) parallel data analysis, segmentation, parsing, and cross-linguistic projection,
as well as (c) direct translation or decoding (Wu, 1997, 2010, 2014; Saers et al.,
2012; Saers and Wu, 2013). The empirical effectiveness of their inductive biases
have placed inversion transductions at the foundations of most current state-of-the-
art SMT systems including, e.g., Moses (Koehn et al., 2007) and Hiero (Chiang,
2007) which induce forms of ITGs and translate using ITG decoders.

In modeling cognition, it is worth noting that all perception and interpretation
is a form of translation. Merely being able to parse the syntactic structure of an
input is pointless from the standpoint of evolutionary advantage; what makes per-
ception and interpretation useful is the translation of the input into an alternative
representation or language that allows the input to be dealt with as effortlessly
as possible—for example, transducing an input utterance into a semantic frame
representation. (Note that both the input utterance and the semantic frames can
always be represented as strings; a nested compositional structure can trivially be
(de)serialized from or into linear form via ordering and explicit markers.)

aA later synonym for transduction grammars used only in computational linguistics, “synchronous
grammars”, is not as widely recognized throughout mathematics and computer science. Similarly,
“synchronous CFG” is synonomous with “SDTG”. As explained in Section 3, however, the closest
bilingual generalization of CFGs is ITGs, rather than SDTGs or synchronous CFGs.



This view predicts that selection pressures tend to drive both surface structure
and semantic frames to evolve toward those classes that are not merely sufficiently
expressive but also efficiently transduceable. A language that can be interpreted
(transduced) quickly into a useful semantic representation will grant its users com-
petitive advantages both (a) against communities using less easily transduceable
languages and semantic frames, and (b) in the face of environmental adversity and
competing species. Similarly, selection pressures will prefer transductions (sur-
face structures and semantic frames) that are efficiently learnable.

How can “efficiently” be meaningfully defined, however? Herein lies the
advantage of viewing semantic frames in terms of transduction from input sen-
tences. Just as with monolingual languages, formal language theory categorizes
transductions into different equivalence classes of generative capacity (expressive-
ness), normal forms, and computational complexity for various standard types of
(bilingual) parsing, translation, and induction algorithms. This lets us empirically
compare tradeoffs between expressiveness and efficiency for different equivalence
classes of transductions, at an abstract computational complexity level that is ag-
nostic as to specific symbolic or neural hardware realizations.

Our other motivation for attacking the SMT task was that very large quantities
of relatively reliable parallel training data could be obtained, even for Chinese and
English which are extremely different languages. Although this is not quite the
same thing as having a parallel corpus of Chinese sentences and their semantic
frame representations, requiring accurate transduction from Chinese directly to
English is, if anything, even more challenging than to an intermediate semantic
representation and then from there to English. In other words, we approximate
the semantic frame representation using an English description of it. If we are
able to come close to solving the harder direct transduction problem, then any
empirical results on representational adequacy should be transferable to models
that transduce to semantic frame representations as well.

3. Complexity for different classes of transductions

Some forms of translation are easier than others. For SDTGs, algorithms for
the recognition problem are exponential time, which is clearly not an evolutionary
advantage. However, by strongly restricting ourselves to narrower subclasses of
syntax-directed transductions, it turns out that polynomial time algorithms become
possible. We discuss only the most salient aspects of the formal analyses; for full
details of various aspects the reader is referred to Wu (1997, 2010, 2014).

A restriction to finite-state transductions is clearly too strong. Algorithms for
recognition of FSTs are very fast (linear time). However, FSTGs generate both the
input and output strings in the same monotonic left-to-right order, and thus cannot
express any reordering permutations at all.

However, inversion transductions empirically turn out to be an expressive yet
efficient way to model translation. Unlike FSTGs, ITGs allow the components of



Table 1. Growth in number of alignment permutations for a sequence of length n.

n linear transductions inversion transductions syntax-directed transductions (n!) ratio
0 1 1 1.000
1 1 1 1 1.000
2 2 2 2 1.000
3 6 6 6 1.000
4 20 22 24 0.917
5 68 90 120 0.750
6 232 394 720 0.547
7 792 1,806 5,040 0.358
8 2,704 8,558 40,320 0.212
9 9,232 41,586 362,880 0.115
10 31,520 206,098 3,628,800 0.057
11 107,616 1,037,718 39,916,800 0.026
12 367,424 5,293,446 479,001,600 0.011
13 1,254,464 27,297,738 6,227,020,800 0.004
14 4,283,008 142,078,746 87,178,291,200 0.002
15 14,623,104 745,387,038 1,307,674,368,000 0.001
16 49,926,400 3,937,603,038 20,922,789,888,000 0.000

different languages to be ordered differently. But unlike SDTGs, rather than allow-
ing arbitrary reordering and paying the price of exponential time complexity, ITGs
impose restrictions that cut the computational complexity down to a manageable
polynomial. A mathematically remarkable property is that three alternative re-
strictions all provably yield the same equivalence class of inversion transductions:
(a) only transduction rules of rank 2 are permitted (no more than two nonterminals
on the right-hand-side), or (b) only transduction rules of rank 3 are permitted (no
more than three nonterminals on the RHS), or (c) only monotonically straight or
inverted permutations are permitted (only left-to-right or right-to-left reordering).

The last alternative definition can be formalized by restricting inversion trans-
duction rules to take one of the following forms:

S → [A] , A →
[
Ψ+

]
, A → ⟨Ψ+⟩

where the square and angled brackets denote straight and inverted order respec-
tively. With straight order, both the L0 and L1 are generated left-to-right, whereas
with inverted order, L1 is generated right-to-left.

Unlike SDTGs, ITGs also have a 2-normal form, analogous to Chomsky nor-
mal form for CFGs, where the rules are restricted to only the following forms:

S → A, A → [BC] , A → ⟨BC⟩, A → e/f

where A,B,C ∈ N are nonterminal symbols, and e/f is a biterminal string.
Between finite-state and inversion transductions, we have also recently intro-

duced and empirically studied the class of linear transductions, as a bilingual
analog of linear languages. A linear transduction grammar or LTG is restricted
to only transduction rules of rank 1 (Saers et al., 2011).

Table 1 compares how the number of permutations grows with the length of the
sequence being transduced, for linear vs. inversion vs. syntax-directed transduc-
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Figure 1. The 24 permutations of length 4, with 2-normal form ITG parses for 22. Nonterminal and
terminal labels are omitted. A horizontal bar under a parse tree node indicates an inverted rule.

tions. For inversion transductions, the series is the Schröder numbers. Note that
we have perfect coverage up to permuting three elements, nearly perfect coverage
for four elements (22 out of 24 permutations), 75% coverage for five elements,
55% coverage for six elements, then dropping off rapidly for longer sequences.

Let us examine the inflection point, at four elements. Figure 1 depicts all 24
possible permutations of four elements (which can be constituents, phrases, or
words), along with ITG parse trees to generate 22 of them. The only two permu-
tations that cannot be generated are, in fact, the same case turned upside down.

Consider what this odd (2, 0, 3, 1) permutation does. Given two adjacent el-
ements 1 and 2, it not only inverts them, but then moves them even further from
each other, to outside both sides of the surrounding context. Intuitively, this seems
like a strange thing to do when trying to preserve meaning across a translation.

In our initial work on ITGs (Wu, 1997), we tested this upon the Hong Kong
Hansard parallel Chinese-English corpus. Not only did the (2, 0, 3, 1) permutation
never occur, but all of the other 22 permutations did occur. This is a somewhat
remarkable match between a mathematical model and a large empirical dataset.

Since then, a very large range of experiments have been conducted by many
groups worldwide, across dozens of language pairs. Even though most “gold stan-
dard” test sets rely on heuristic automatic alignment programs and/or datasets con-
taining flawed translations—and therefore actually underestimate the coverage of
ITGs, as in for instance the study by Zens andNey (2003) onGerman and French—
nevertheless the coverage of inversion transductions remains almost universally
extremely high. Wu (1997) gives concrete example sentence pairs illustrating why



MONOLINGUAL BILINGUAL
regular or finite-state languages regular or finite-state transductions

FSG (FSA) O(n) FSTG (FST) O(n)
CFG that is right linear or left linear SDTG that is right linear or left linear

linear languages linear transductions
LG O(n2) LTG O(n4)

CFG that is unary or linear SDTG that is unary or linear
context-free languages inversion transductions

CFG O(n3) ITG O(n6)
SDTG that is binary or ternary or inverting

syntax-directed transductions
SDTG O(n2n+2)

(or synchronous CFG)

Figure 2. Hierarchy of equivalence classes and their complexities, for languages vs. transductions.

ITGs provide surprising flexibility in permutations.
Finite-state, linear, inversion, and syntax-directed transductions actually form

a hierarchy of equivalence classes for transductions analogous to Chomsky’s hier-
archy for languages, as shown in Figure 2 together with their computational com-
plexity for the standard dynamic-programming recognition algorithms that under-
lie parsing and EM learning. Unlike themonolingual case, no 2-normal form exists
for SDTGs. Just as in the monolingual case, there is a tradeoff between generative
capacity and computational complexity: the more expressive classes of transduc-
tions are orders of magnitude more expensive to biparse and train.

4. Discussion and conclusion

Unlike the monolingual case, ITGs represent the most expressive equivalence
class still having tractable polynomial-time complexity. It is this property that
allows us to run large-scale SMT experiments in unsupervised induction of trans-
duction grammars. Empirically, even SMT systems that start out with unrestricted
SDTG representations are nearly always simplified down to ITGs because doing
so empirically results in significantly higher translation accuracy—indicating a
better matched inductive bias at the level of inversion transductions.

In contrast to measurements on the permutations of surface form strings, Ad-
danki et al. (2012) recently directly measured LTG vs. ITG coverage of cross-
linguistic semantic frame alternations using annotated parallel PropBank data. Not
only did ITGs cover 100% of the semantic frame alternations across languages, but
even LTGs somewhat surprisingly covered 97%.

We have proposed that the magic number four is explained via evolutionary
pressures of efficient transduceability and learnability, stemming from fundamen-
tal combinatorial properties of inversion transductions that simultaneously (a) gen-
erate frame-like Saussurean sign structures expressing almost any transposition of
up to about four arguments, (b) match a wide range of cross-linguistic sequence re-
ordering data, and (c) admit tractable polynomial-time recognition algorithms for
both language interpretation and learning. A potential implication is that since se-



mantic frame and construction grammar formalisms today exceed inversion trans-
duction generative capacity, they may have too much expressive power to be effi-
ciently learnable and an ITG restriction could provide a better learning bias.
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