
ON-THE-FLY USER MODELING FOR COST-SENSITIVE
CORRECTION OF SPEECH TRANSCRIPTS

Matthias Sperber1, Graham Neubig2, Satoshi Nakamura2, Alex Waibel1

1Karlsruhe Institute of Technology, Institute of Anthropomatics and Robotics, Germany
2Nara Institute of Science and Technology, Augmented Human Communications Laboratory, Japan

ABSTRACT

We propose an on-the-fly updating framework for cost-
sensitive manual correction of automatically recognized
speech transcripts. This framework trains cost-models during
the transcription process, and does not require the transcriber
enrollment necessary in previous work. We use a baseline
method that optimizes a segmentation into segments to su-
pervise or not to supervise in a cost-sensitive fashion that
minimizes human effort, and introduce a much faster algo-
rithm for computing such a segmentation that can be used
for on-the-fly updates. Besides removing the need to carry
out enrollments, experiments show that our updating frame-
work results in 28% higher human supervision efficiency than
previous cost-sensitive approaches.

Index Terms— Speech transcription, error correction,
cost-sensitive annotation, user modeling

1. INTRODUCTION

High-quality speech transcripts are required in a variety of
tasks, ranging from training data for automatic speech recog-
nition (ASR) to downstream tasks such as speech translation.
Unfortunately, often automatically created transcripts contain
too many errors to be useful in practice, and human tran-
scribers must be employed to improve their quality. In this
work, we examine how to make this supervision process as
efficient as possible by choosing which segments should be
supervised in a cost-sensitive manner.

Previous works on supervision for speech transcription
showed that it is important to divide the speech into small seg-
ments that are convenient to transcribe [1], and that by super-
vising only low-confident segments of an ASR transcript, su-
pervision time can be greatly reduced at a small loss in num-
ber of corrected errors [2, 3]. Studies on cost-sensitive anno-
tation have shown that to maximize supervision efficiency, it
is important to model human supervision effort when choos-
ing which data to supervise [4, 5, 6]. Moreover, explicitly
optimizing the location of segment boundaries helps focus su-
pervision time on segments with a high proportion of errors,
further increasing supervision efficiency [7].

Common to these previous works on cost-sensitive choice
of data is a two step process. The first step consists of tran-
scriber enrollment, where the transcriber first transcribes a
certain amount of randomly selected data, which is then used
to train predictive user models (usually a cost model that pre-
dicts supervision time). In the second step, the user models
are used to determine which data should be supervised. How-
ever, enrollments are time-consuming, costly, and may be im-
practical, for example in a crowd sourcing situation.

In this paper, we make two contributions over previous
methods, which allow us to perform efficient cost-sensitive
transcription without need for enrollments. The first contri-
bution (see Section 3) is a framework of updating user mod-
els and corresponding choice of supervised data on-the-fly
(during the ongoing transcription process). Our second con-
tribution (see Section 4) is a new, more efficient method for
choosing which segments of the ASR transcript to supervise
based on an iterative search process. This method explic-
itly optimizes locations and lengths of supervised segments
to optimize supervision efficiency, as proposed in [7], which
is a computationally difficult task. Computing such segmen-
tations quickly is essential in our on-the-fly updating scenario,
because the segmentation must be updated each time the user
model is updated in order to incorporate the improved predic-
tions of supervision time.

We use a partly simulated experimental framework that
allows us to conduct detailed experiments. First, we demon-
strate that our new segmentation algorithm drastically reduces
computation time compared to a previous approach, without
degrading quality. Next, we show that user models trained
on-the-fly are as effective as when trained on balanced enroll-
ment data, and remove the need to spend time on enrollment.
We compare our approach to several baselines, showing that it
outperforms both cost-insensitive baselines and cost-sensitive
baselines without updates in terms of supervision efficiency
(error corrections per time). An analysis shows that efficiency
gains are attributed to (1) increasingly accurate cost models,
(2) adjusting to the actual remaining time budget with each
update, and (3) choosing a sensible (although crude) initial
cost model that includes cognitive overhead. Finally, we show
that our cost-sensitive approach can deal with noisy supervi-
sion times, as observed with novice transcribers.

(at)% (what’s)% a% bright% day%…%
[CORRECT:0/3],

cold%
[CORRECT:2/5],

[CORRECT:1/4],[CORRECT:1/4],

[SKIP:0/0],[SKIP:0/0],

Fig. 1. A graph of different possible segmentations for the
ASR transcript of the sentence fragment “It was a bright
cold day . . . ”. Edges are segments (some edges are omit-
ted for readability), and nodes potential segment boundaries.
Segments are labeled with [supervision mode:predicted util-
ity/predicted cost]. For optimal supervision efficiency, the
solid edges might be preferable over the dashed ones.

2. BASELINE MODEL

As a baseline for our work, we use a state-of-the-art anno-
tation framework, SESLA1 (short for Segmentation for Effi-
cient Supervised Language Annotation) [7]. Given an ASR
transcript to be corrected by a human annotator, SESLA deter-
mines a segmentation of the transcript, and makes a decision
whether or not to transcribe each segment, such that super-
vision efficiency is optimized. The idea is that we naturally
want to concentrate on supervising parts that yield high util-
ity, in terms of number of errors that are removed by super-
vising them. While choosing very small segments (e.g. single
words) would allow us to really concentrate only on parts of
maximum utility, longer segments are desirable from a cog-
nitive point of view as they reduce cognitive overhead due to
context switches.

Formally, SESLA searches for a segmentation of the N
words of an ASR transcript wN

1 into MN segments with
boundaries at sM+1

1 =(s1=1, s2, . . . , sM+1=N+1). A seg-
ment boundary marker si is interpreted as placing a segment
boundary before the si-th word (or the end-of-transcript
marker for sM+1=N+1). Each segment is further associ-
ated with a supervision mode mj 2 K, in this work either
CORRECT (the segment should be corrected), or SKIP (the
segment should not be corrected). This segmentation is se-
lected based on predictive models to estimate supervision cost
(here: correction time) and utility (here: number of corrected
errors) for any particular segment. For each segment wb

a and
supervision mode k, we denote utility by uk(w

b
a) and cost

by ck(w
b
a). Note that cost and utility for the SKIP mode are

always 0. Figure 1 illustrates the segmentation problem.
We desire a segmentation that maximizes the total utility,

while keeping the total cost within a cost budget C:

max

M ;sM+1
1 ;mM

1

MX

j=1

h
umj

⇣
wsj+1

sj

⌘i

s.t.
MX

j=1

h
cmj

⇣
wsj+1

sj

⌘i
 C

1http://msperber.com/research/tacl-segmentation/

As a cost model, a regression model that predicts supervi-
sion time is learned from a transcriber enrollment. Gaussian
Process (GP) regression is employed as a Bayesian technique
that yields state-of-the-art regression accuracy. In addition, it
allows convenient specification of a prior, a feature that we
will exploit in this work. As regression features, segment
length, duration, and average confidence are used. Utility,
defined as the numbers of errors removed from the transcript,
is estimated using scaled word confidence scores.

3. ON-THE-FLY UPDATING FRAMEWORK

The baseline method relies on a cost model that is trained
via an enrollment, which is costly and takes up time that the
transcriber might otherwise have invested in being produc-
tive. For instance, in [7] an enrollment of roughly 30 minutes
is carried out, and in our simulations 50–100 minutes were
required for the cost model to converge (Section 5.2). While
investing enrollment time will improve supervision efficiency
and pay off in the long run, for transcribers that supervise
only a small amount of data, as is common in crowd-sourcing
situations, this approach may not be economical at all.

Here, we improve upon this situation by allowing tran-
scribers to be productive from the start. We create an initial
segmentation with a crude initial cost model, and iteratively
improve the cost model and consequently the segmentation as
the transcription is underway. There are several advantages to
this approach: (1) The transcriber enrollment is removed, in-
stead the transcriber is productive from the start. (2) The seg-
mentation will grow increasingly efficient due to the improv-
ing cost model, starting out rather crude in the beginning, and
eventually reaching or surpassing the efficiency that would
have been reached using a cost model trained via enrollment.
(3) Each updated segmentation will take into account the ac-
tual remaining time budget, which may differ from what had
been predicted as remaining when the transcriber would reach
a certain position in the ASR transcript. This solves an issue
pointed out in previous work [7], in which systematic errors in
time predictions resulted in considerable over- or underspend-
ing of the given time budget. Re-segmenting ensures that the
remaining time is used optimally, for example by skipping
some of the less promising segments if the remaining time
budget had been overestimated.

3.1. Approach to Updating Segmentations

We propose to update the segmentation periodically as in Al-
gorithm 1. We initialize the cost model MC such that it will
rely solely on a prior. The transcription position j is initial-
ized to the first word, and an initial segmentation of the com-
plete ASR transcript is created. The transcriber starts tran-
scribing the first batch of segments from the current position
j, until B seconds have passed, at which time j is updated.
MC is updated using the observed supervision times. Finally,

Algorithm 1 Supervision & Updating Framework
. given: T (time budget), wN

1 (ASR transcript), B (batch
size), MU (utility model, fixed)
MC M

(0)
C . initialize cost model

j 1 . set transcription pos. to first word
SEGMENT(wN

1 ,MC ,MU , T)
while tremain > 0 do

SUPERVISEBATCH(wN
j ,min(B, tremain))

j resulting transcription pos.
UPDATE(MC , newly observed times)
SEGMENT(wN

j ,MC ,MU , tremain)
end while

the remainder of the transcript that has not yet been super-
vised is re-segmented using the updated cost model and the
remaining time budget tremain, and another batch of B seconds
is transcribed. Transcription is stopped when the time budget
is exhausted, or the end of the transcript has been reached.

3.2. User Model Priors

To create the initial segmentation, we need a reasonable ini-
tial cost model. Since transcribed data from similar users or
tasks may not be available, we rely solely on a manually de-
fined prior. We argue that to create a sensible initial segmen-
tation, the cost model can be crude, but should capture two
key observations, namely that longer segments take longer to
supervise, and that the transcriber will need some time to pro-
cess the context switch for each new segment. We therefore
specify the prior cost as 2 + n seconds, where n is the seg-
ment length. Considering our transcript correction task, this
prior underestimates the actual cost, but we deliberately avoid
hand-tuning the prior to simulate a situation where little task
expertise is available.

4. SEGMENTATION VIA ITERATIVE SEARCH

To make on-the-fly updates of the segmentation practical,
new segmentations must be computed rapidly. Previous work
transformed the segmentation problem into a constrained
shortest path problem and used a general-purpose integer lin-
ear program (ILP) solver to find an approximate solution [7],
but this approach is not sufficiently fast for updating segmen-
tations during the transcription process. In this section, we
introduce a new segmentation algorithm that we will demon-
strate to be dramatically more time- and memory-efficient (s.
Section 5.1). Because this segmentation problem is NP-hard,
we focus on approximating the solution.

4.1. Description of Algorithm

Consider a penalized segment scoring function that is de-
fined as a linear combination of a segment’s utility and cost,

Algorithm 2 Iterative Penalized Dynamic Programming
. Initialize lower-/upper-bound segmentations SL, SU and
penalties �L,�U

while u(SU)/u(SL) > 1 + ✏ do
�0 (�U + �L)/2
S0 SEGMENTDP(�0)

if c(SU) � c(S0
) � C then

�U , SU �0, S0

else . i.e., c(SL)  c(S0
)  C

�L, SL �0, S0

end if
end while

s�;k(i, j) := uk(w
j
i) � �ck(w

j
i), with a cost-penalty � > 0.

For a given �, it is easy to compute a segmentation that opti-
mizes the total penalized score over all segments via dynamic
programming (DP).2 By varying the value of �, we can obtain
different Pareto-optimal segmentations with respect to utility
and cost, i.e. we cannot increase their utility without increas-
ing cost and vice versa. We desire to find the segmentation
that has maximum utility while obeying our cost constraint,
which corresponds to one of these Pareto-optimal solutions.
Hence the search problem reduces to finding the optimal
value for �. Intuitively, if it turns out that by using the Pareto-
optimal segmentation corresponding to a given � we would
be overspending our time budget (we say this segmentation
is infeasible), we should increase �, thus penalizing costly
segments more strongly. Similarly, if the budget is under-
spent (the segmentation is feasible), � should be decreased.
We follow this simple intuition by iteratively first computing
Pareto-optimal segmentations, and then adjusting �. While
finding the optimal value for � is NP-hard, we can efficiently
find an arbitrarily good approximation via a binary search.

According to Algorithm 2, we start by initializing upper
and lower bound segmentations SU , SL and penalties �U ,�L.
We do this by first trying an arbitrary value for �, and then re-
peatedly multiplying or dividing it by a constant factor (here:
10), until an (in-)feasible Pareto-optimal solution is found,
depending on whether the first segmentation was feasible or
not. Henceforth, the upper bound will refer to the lowest-
scoring infeasible segmentation seen so far, and the lower
bound is the highest-scoring feasible segmentation. We re-
peat until the gap between utilities associated with our upper
and lower bounds is below a threshold ✏: We consider a new
penalty �0, halfway between the upper- and lower-bound val-
ues. We compute a corresponding Pareto-optimal segmenta-
tion S0 via DP, and update the lower or upper bound, depend-
ing on whether the segmentation was feasible or not.

The DP algorithm that finds Pareto-optimal segmenta-
tions, given a penalty �, computes the total penalized score
aj of the best segmentation of wj

1, and keeps back pointers to

2Note that the original segmentation problem cannot be solved in polyno-
mial time by dynamic programming due to the global constraint.

find an optimal segmentation as follows:

a1 = max

k2K
s�;k(1, 1)

aj = max

i<j
(ai +max

k2K
s�;k(i, j))

The DP has computational complexity O(N2
). By limit-

ing the segment size to be at most R (here: 20), the complex-
ity reduces to O(RN). Moreover, the number of iterations of
the binary search for � depends on the approximation thresh-
old ✏, but generally does not depend on N , so the overall al-
gorithm’s complexity is essentially linear in the length of the
ASR transcript.

4.2. Computation vs. Supervision Time

According to Algorithm 1, the transcriber would wait idly
while the cost model and segmentation are being updated.
Depending on the amount of data for cost model training and
segmentation, this may take several seconds or even longer,
and waiting may be found undesirable. One solution would
be to perform updates while the transcriber takes a break. Al-
ternatively, updates might be performed in parallel to the tran-
scription, and the transcriber would be switched to the new
segmentation whenever a new segmentation is ready. Note
also that training time of our GP regression user model is cu-
bic in the number of training samples, and gets quite slow
for more than about 1000 samples. A simple solution would
be discarding older samples for long-term transcribers. For
simplicity, we abstract from these factors in our analysis.

5. EXPERIMENTS

To evaluate our method, we considered a correction scenario
where the transcriber is given an ASR transcription with the
goal to remove as many errors as possible, given a 100 minute
time budget. As transcription data, we used 10 TED talks3

(short presentations by skilled speakers, the total length was
104 minutes or 17.8k words). The erroneous transcripts were
created using the Janus speech recognition toolkit [8] with a
simple TED-optimized setup. The word error rate on our test
set was 22.3%, with a total of 3978 errors. The reference tran-
scripts were carefully transcribed and of high accuracy. Our
user models are set up similar to [7]: We employ scaled confi-
dences as our utility model, and GP regression with a squared
exponential kernel, predicting log times to avoid negative val-
ues.4 Noise and kernel variances for the GP regressors were
set to log(5 sec). We empirically confirmed that these pa-
rameters are sensible, but did not fine-tune them because in a
practical situation, parameter tuning data might not be avail-
able. We used the proposed segmentation algorithm to find a
solution within 1% of the optimal solution.

3www.ted.com
4GP regression was done using GPy: github.com/SheffieldML/GPy

To be able to compare a large number of different set-
tings, we carried out partly simulated experiments. We asked
a real, non-expert transcriber to transcribe from scratch 200
segments randomly chosen from TED data, balanced across
different lengths and average confidence scores. We mea-
sured the time taken to transcribe each segment. Based on this
data, we trained an oracle time model via GP regression, and
used this model as the gold standard that the tested cost mod-
els will try to reproduce. The GP regressor was trained with
an identical kernel as the user models, but with the prior set to
the best linear fit in terms of least squares error. We then dis-
torted its predictions with multiplicative gamma-distributed
noise, to serve as our final oracle time model. The multiplica-
tive noise had a mean of 1 and moderate variance of 0.01,
unless otherwise noted. In our simulations, we assumed that
the human transcriber behaves according to this oracle time
model. We further assumed that the transcriber successfully
transforms the ASR transcript of every supervised segment
into the corresponding reference transcript, without making
mistakes. The batch size B is set to 2.5 minutes, unless other-
wise noted. All results are averaged over 10 simulation runs,
with the order of talks and noise multipliers chosen at random.

5.1. Segmentation Algorithms

We first compared the computational efficiency of segment-
ing according to the algorithm proposed in Section 4, as op-
posed to using GUROBI as an off-the-shelve ILP solver as in
the baseline method. GUROBI is highly optimized commer-
cial software and among the fastest ILP solvers available,5
while our Java implementation of the proposed algorithm is
straightforward, with little code level optimization. We used
the initial cost model to segment increasingly large subsets
of our data. Both algorithms were run on a single proces-
sor, and stopped after producing a solution within 1% of their
respective upper bounds. Figure 2 shows the results. It can
be seen that the proposed method stays within a computa-
tion time of around 3 seconds, while the ILP solver needs
more than two minutes to segment all data. Further, the pro-
posed method’s memory consumption grows only linearly in
the number of words, needed to store the DP scores. In con-
trast, for segmenting the complete dataset, we observed mem-
ory consumption one or even two orders of magnitude higher
for the ILP solver. Besides being faster, the proposed algo-
rithm has the advantage of being easy to implement without
relying on proprietary software. We therefore use the pro-
posed algorithm in the following experiments.

5.2. User Model Convergence

First, we examine the convergence of the cost models in terms
of prediction accuracy. A concern that arises when training a
cost model on-the-fly rather than on a balanced enrollment

5See benchmark on http://plato.asu.edu/ftp/milpc.html

1k 3k 5k 7k 9k 11k 13k 15k 17k
0

50

100

150

Number of segmented words

C
om

pu
t.

tim
e

[s
ec

]

7.3s
0.7s

57s
2.8s

112s

4.7s

Proposed algorithm
ILP solver

Fig. 2. Computation time needed to segment different
amounts of data using an ILP solver or our proposed algo-
rithm.

20 40 60 80 100
2

4

6

8

Transcription time [sec]

M
ea

n
ab

s.
er

ro
r [

se
c]

3.14
2.49

On−the−fly cost model
Balanced cost model

Fig. 3. Accuracy of time prediction models trained on-the-fly
or using a balanced selection of segments. The latter con-
verged slightly faster.

training set is that the model might suffer from the result-
ing data bias. We therefore compare convergence of a model
trained on-the-fly to a second model that is trained on a set
of segments uniformly sampled from all possible segments,
resembling an enrollment on a balanced data set. Prediction
accuracy was computed on all possible segments. Figure 3
shows that the user model generalizes well despite skewed
training data, almost as well as when trained on balanced data.
A detailed analysis revealed that the slight drop in accuracy is
attributed to segments of high confidence and relatively long
size, which were underrepresented among the segments cho-
sen by the proposed method.

Next, we were interested in whether this drop would make
a difference in terms of supervision efficiency. We therefore
ran the full simulation with the proposed framework, and then
ran it again but replaced the cost model with an enrollment-
style cost model with balanced training data of equivalent
supervision time at each update. However, we observed no
significant difference in the final number of removed errors,
presumably because the segments with the less accurate cost
predictions were high-confident and long, thus having little
chance of getting selected for supervision in the first place.

0 10 20 50 100
0

500

1000

1500

Update frequency / enrollment time [min]

C
or

re
ct

ed
 e

rr
or

s

Prop
Prop−NPr

Prop−Seg
b−Enr

b−Conf
b−Lin

Fig. 4. Errors corrected for the proposed method (Prop) and
several other settings, plotted against update frequency or en-
rollment time as described in the text.

5.3. Effectiveness of Updating Framework

In this section, we evaluate the end-to-end effectiveness of the
proposed updating framework, compared to several baseline
approaches, in terms of the final number of errors removed af-
ter 100 minutes of transcription time. As Figure 4 indicates,
with the proposed setup (Prop) 1655 errors are removed when
performing updates every 2.5 minutes, with the utility de-
creasing for fewer updates, until only 1328 errors are removed
when performing no updates to the initial segmentation. For
an update interval of 2.5 minutes, we observed the efficiency
(corrections/second) to start out around 0.2 at the beginning
of the transcription process, and converging halfway through
transcription at about 0.3, which illustrates increasing quality
of segmentations due to on-the-fly updates.

Figure 4 also shows several other experimental settings:
Cost-insensitive baselines (b-Conf, b-Lin). Without a cost
model, SESLA cannot be used to optimize segmentations, so
in this experiment we consider predefined, fixed segmenta-
tions. Previous research found that transcribing (sub-) sen-
tences is preferable over transcribing individual words [1, 3],
so we divide our transcript into segments of 10 words. In
b-Lin, the transcriber corrects segments in linear order from
the start until the time budget is exhausted, while b-Conf ex-
ploits our utility model and chooses the segments with highest
utility. The first baseline is much inferior, while the second
baseline still slightly underperforms the proposed approach,
even without updates and only the prior cost model. This
indicates that even using our crude prior cost model is better
than not using a cost model at all.
User models from enrollment (b-Enr). This is a cost-sensitive
baseline similar to [7]. Segmentations are optimized us-
ing SESLA, but not updated on-the-fly, and the cost-model
is trained via enrollment. In this scenario, we assume that
supervision time can be divided between enrollment and pro-
ductive error correction. In the graph, we vary over how much
time is reserved for enrollment, and find optimum utility for

enrollments of 0 or 10 minutes, only slightly better than the
confidence baseline, and 28% worse than the best proposed
setup. Note that in a practical situation, the optimal division
between spending time for enrollment and productive tran-
scription is unknown.
Updating segmentations, but not user models (Prop-seg). To
analyze the impact of frequently updating segmentations to
reflect the actual remaining time budget at different times,
here we update segmentations as proposed, but use fixed
user models trained via enrollment as the previous baseline.
Compared to b-Enr, this brings considerable gains, especially
when setting enrollment time to 0, in which case 1540 errors
are corrected (7% worse than with the best proposed setup).
This indicates that adjusting to the actual remaining time
budget is a crucial factor in our framework.
Full updating framework with naive prior (Prop-NPr). To
examine the importance of using the proposed prior, we run
the full proposed updating framework, but use a naive cost
model prior that simply assumes transcription time to take
up 1s per word, dropping the segment overhead. This leads
to considerable losses, especially when running updates in-
frequently, indicating that modeling segment overhead in the
prior is another significant factor.

Finally, we tested how well our approach generalizes to
other users. We created a second oracle time model via en-
rollment of a second transcriber, doing post-editing (unlike
the first person, who transcribed from scratch). Transcription
was about 4% faster than the first transcriber. Next, we in-
creased the multiplicative noise variance from moderate 0.01
to a high value of 1. High variance in supervision time can be
expected with novice transcribers, or when the transcription
task is inherently difficult. Consistently for both transcribers,
the gain in end-to-end utility using the (Prop) instead of (b-
Conf) dropped from 34% to 11%. This indicates that even
when cost is difficult to model, doing so is worthwhile and
beats cost-insensitive approaches, though at somewhat dimin-
ished gains.

6. CONCLUSION

We proposed a new on-the-fly updating framework for cost-
sensitive correction of speech transcripts, along with a new,
faster algorithm that determines which segments to correct.
Besides being more convenient to use than previous cost-
sensitive methods that required transcriber enrollment, we
show that our approach yields higher supervision efficiency.
Efficiency gains are attributed to updating cost models, up-
dating segmentations, and a sensible initial cost model.

Cost models trained on-the-fly are useful for other tasks,
such as cost-efficient computer-assisted translation [9], pre-
dicting post-editing time [10], and anytime active learning
[6]. Future work will consider such additional tasks, investi-
gate in how to efficiently train large cost models for long-term
transcribers, and conduct real user studies.

Acknowledgments
The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n 287658 Bridges
Across the Language Divide (EU-BRIDGE).

7. REFERENCES

[1] Brandon C. Roy and Deb Roy, “Fast transcription of
unstructured audio recordings,” in Interspeech, 2009.

[2] Isaias Sanchez-Cortina, Nicolas Serrano, Alberto San-
chis, and Alfons Juan, “A prototype for Interactive
Speech Transcription Balancing Error and Supervision
Effort,” in Int’l Conf. on Intelligent User Interfaces
(IUI), 2012.

[3] Matthias Sperber, Graham Neubig, Christian Fügen,
Satoshi Nakamura, and Alex Waibel, “Efficient Speech
Transcription Through Respeaking,” in Interspeech,
2013.

[4] Burr Settles, Mark Craven, and Lewis Friedland, “Ac-
tive Learning with Real Annotation Costs,” in NIPS
Workshop on Cost-Sensitive Learning, 2008.

[5] Katrin Tomanek and Udo Hahn, “A Comparison of
Models for Cost-Sensitive Active Learning,” in Int’l
Conf. on Computational Linguistics (COLING), 2010.

[6] Maria E. Ramirez-Loaiza, Aron Culotta, and Mustafa
Bilgic, “Anytime Active Learning,” in Conf. on Artifi-
cial Intelligence (AAAI), 2014.

[7] Matthias Sperber, Mirjam Simantzik, Graham Neubig,
Satoshi Nakamura, and Alex Waibel, “Segmentation for
Efficient Supervised Language Annotation with an Ex-
plicit Cost-Utility Tradeoff,” Transactions of the Assoc.
for Computational Linguistics (TACL), April 2014.

[8] Hagen Soltau, Florian Metze, Christian Fügen, and
Alex Waibel, “A One-Pass Decoder Based on Poly-
morphic Linguistic Context Assignment,” in Auto-
matic Speech Recognition and Understanding Workshop
(ASRU), 2001.

[9] Jesús González-Rubio and Francisco Casacuberta,
“Cost-sensitive active learning for computer-assisted
translation,” Pattern Recognition Letters, vol. 37, Feb.
2014.

[10] Trevor Cohn and Lucia Specia, “Modelling Annotator
Bias with Multi-task Gaussian Processes: An Applica-
tion to Machine Translation Quality Estimation,” in As-
soc. for Computational Linguistics (ACL), 2013.

