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ABSTRACT into adulthood, while for males during puberty there is a dis

This paper introduces approaches based on vocal trachlengi"oPortionate growth of the vocal tract, which lowers for-
normalisation (VTLN) techniques for hybrid deep neura|ma_ntfrequen0|es,t_ogetherwnh an enlargement of theigjlott
network (DNN) - hidden Markov model (HMM) automatic which lowers the pitch. After age 15, males show a substan-

speech recognition when targeting children’s and adultstially longer vocal tract and lower formant frequenciesrtha

speech. VTLN is investigated by training a DNN-HMM fgm_ales. As consequence, voices of children tend to be more
system by using first mel frequency cepstral coefficient$imilar to the voices of women than to those of men. For
(MFCCs) normalised with standard VTLN. Then, MFCCs adults, variations in voice charact(?rlstlcs dge to speager
derived acoustic features are combined with the VTLN warp@'® much less evident than for children while males and fe-
ing factors to obtain an augmented set of features as inptRales exhibitclearly different formant patterns.

to a DNN. In this later, novel, approach the warping factors ~VTLN aims at reducing inter-speaker acoustic variability
are obtained with a separate DNN and the decoding can 4 Warping the frequency axis of the speech power spectrum
operated in a single pass when standard VTLN approach r& accountfor the fact that the precise locations of voratit
quires two decoding passes. Both VTLN-based approach&§Sonances vary roughly monotonically with the physicze si
are shown to improve phone error rate performance, up t8f the speaker [4, 5, 6]. Effectiveness of VTLN techniques

20% relative improvement, compared to a baseline trained offas Widely proven in the past for hidden Markov model
a mixture of children’s and adults’ speech. (HMM) - Gaussian mixture modelisation (GMM) based

o recognition of children’s and adults’ speech [7, 8, 4, 5, 6].
Index Terms— Vocal tract length normalisation, auto-  pyring the past years, DNN has proven to be an effective
matic speech recognition, children’s speech recognitieBp  gjternative to HMM-GMM based ASR [9, 10] obtaining good
neural networks performance with context dependent hybrid DNN-HMM [11,
12]. Very recently the use of DNN has been also investigated
1. INTRODUCTION for ASR of children’s speech [13].
In [14] an investigation was conducted by training a DNN
Speaker-related acoustic variability is one of the majars®  gn VTLN normalised acoustic features, it was found that in a
of errors in automatic speech recognition. In this paper Wearge vocabulary adults’ speech recognition task limitathg
cope with age group differences, by considering the refevartan be achieved with respect to using unnormalised acous-
case of children versus adults, as well as with male/femalgc features. It was argued that, when a sufficient amount of
differences. Here vocal tract length normalisation (VTL&)  training data is available, DNN are already able to learn, to
used together with deep neural network (DNN) to deal withsome extent, internal representations that are invariétht w
the acoustic variability induced by age and gender differrespect to sources of variability such as the vocal tragtren
ences. and shape. However, when only limited training data is avail
Developmental changes in speech production introducgple from a heterogeneous population of speakers, made of
age-dependent spectral and temporal variabilities indpee children and adults as in our case, the DNN might not be able
produced by children. Studies on morphology and developreach strong generalisation capabilities [15]. In suctecas
ment of the vocal tract [1] reveal that during childhood #her techniques like DNN adaptation [16’ 17’ 18], Speaker adapta
is a steady gradual lengthening of the vocal tract as thd chiljon [19, 20] or VTLN [4, 5, 6] can help to improve the per-
grows while a concomitant decrease in formant frequenciegrmance. Here we consider first the application of a conven-
occurs [2, 3]. In particular, for females there is an essentjponal VTLN technique to normalise MFCC as input features
tial gradual continuous growth of vocal tract through ptper tg 3 DNN-HMM.
This work was partially funded by the European project EUHBRE, Recent works have shown that augmenting the inputs of
under the contract FP7-287658. a DNN with, e.g. an estimate of the background noise [21]
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or utterance i-vector [22], can improve the robustness andsing a dedicated DNN, for each speech frame the posterior
speaker independence of the DNN. We then propose to augrobability of each warping factor is estimated and b) fatea
ment the MFCC inputs of the DNN with the posterior prob-speech frame the vector of the estimated warping factor pos-
abilities of the VTLN-warping factors to improve robustees terior probabilities is appended to the unnormalised a@ous
with respect to inter-speaker acoustic variations. features vector, extended with context, to form an augnaente
The rest of this paper is organized as follows. Section Zcoustic features vector for the DNN-HMM system.
introduces the general DNN baseline and reminds DNN adap-
tation asa contrastive way to deal W|_th aco_ustlc variabidit 3.1. VTLN normalised features as input to the DNN
targeting groups of speakers. Section 3 introduces two ap-
proaches, based on VTLN, to cope with inter-speaker acousn the conventional frequency warping approach to speaker
tic variability. Experimental setup is described in Sect®  normalisation [4, 5, 6], typical issues are the estimatién o
and results are presented in Section 5. Finally, conclssiora proper frequency scaling factor for each speaker, or-utter

are provided in Section 6. ance, and the implementation of the frequency scaling dur-
ing speech analysis. A well known method for estimating
2. DNN-HMM BASELINES the scaling factor is based on a grid search over a discrete

set of possible scaling factors by maximizing the likeliloo
Performance obtained with the VTLN techniques are to b@®f warped data given a current set of HMM-based acous-
confronted with results obtained with a general DNN-HMM tic models [4]. Frequency scaling is performed by warping
baseline system and with those obtained in our previoufle power spectrum during signal analysis or, for filtertban
work [15] using an approach based on a DNN adaptatioﬁased acoustic front-end, by changing the spacing and width

procedure similar to the procedure proposed in [18] for th@f the filters while maintaining the spectrum unchanged [4].
case of multilingual training. In this work we adopted the latter approach. Details on the

VTLN implementation are provided in Section 4.3.

Similarly to as proposed in [14], the VTLN normalised
acoustic features are used to form the input to the DNN-HMM
The DNN-HMM baseline is trained on speech collected fronsystem both during training and testing.
speakers from all target groups, that is in our case children
adult males aqd adult females. This tralnllng procedure is a8 2. Posterior probabilities of VTLN warping factors as
attempt to achieve a DNN-HMM system with strong general-

o o input to DNN
isation capabilities.

2.1. General DNN-HMM

In this approach we propose to augment the acoustic features
2.2. Agelgender specific DNN-HMM vector with the posterior probabilities of the VTLN warp-
ing factors to train a warping-factor aware DNN. Similar ap-
Estimating the DNN parameters on speech from all groups gfroaches have recently been shown to improve the robustness
speakers, may however, have some limitation due to the inh@mnd speaker independence of the DNN [21, 22].
mogeneity of the speech data that may negatively impact on  The VTLN procedure is first applied to generate a warp-
the classification accuracy compared to group-specific DNNng factor for each utterance in the training set. Thenniraj
One option is to train group specific DNN. However, in our ytterances and corresponding warping factors are useaito tr
case only limited data is available for each specific group of pNN classifier that learns to infer the VTLN warping factor
speakers so that the DNN might not be able to be properljtom the acoustic feature vector. This DNN is then used to
trained. To overcome this problem, the DNN trained on allproduce the posterior probabilities of the VTLN warping-fac

data available is adapted to each specific group of speakegsys for each input speech frame. This DNN will be referred
by using group specific training data. Further details os thitg as DNN-warp.

approach can be found in [15]. During training and testing of the DNN-HMM system, for
each speech frame the warping factor posterior probadsiliti
3. VTLN FOR DNN-HMM are estimated with the DNN-warp. These estimated poste-

rior probabilities are appended to the unnormalised a@ust
In this work, the problem of inter-speaker acoustic vatighi  features vector, extended with context, to form an augntente
due to vocal tract length (and shape) variations among spea&coustic features vector. The extended features vectoeis t
ers is tackled with two different approaches. The first one isiormalised and used as input to the DNN-HMM.
based on the conventional VTLN approach [4, 5, 6]. The re- This approach has the advantage to reduce considerably
sulting VTLN normalised acoustic features are used as inputhe complexity during decoding compared to the approach
to the DNN both during training and testing [14]. The secondmaking use of VTLN normalised acoustic features that re-
approach, proposed in this paper, has two main featurey: a) lguires two decoding passes [4, 23].
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4. EXPERIMENTAL SETUP sions. In each recording sessions each speaker read a cali-
bration sentence, 4 phonetically reach sentences and 15 or 2
4.1. Speech corpora diphonically rich sentences.

For this study we relied on two Italian speech copora: the The corpus was partitioned into: a training set consisting
ChildIt corpus consisting of children speech and the APASCPT data from 134 speakers for a total duration of 5h:19m; a de-
corpus consisting of adults’ speech. Both corpora were use¢lopment set consisting of data from 30 speakers balanced
for evaluation purposes, while the Childit and the APASCIPer gender, for a total durations of 0h:39m (20,363 phone

provided similar amount of training data for children andoccurrences); a test set consisting of data from 30 speakers
adults, respectively. balanced per gender, for a total duration of Oh:40m (20,708

phone occurrences). Audio recordings of phonetically rich
411 Childi sentences and of the calibration sentence were not incinded
Bt idit the development and test sets. The development set is formed

The Childlt corpus [8, 24] is an Italian, task-independentPY 550 audio recordings while the test set is formed by 520
speech corpus that consists of clean read speech fromamildraudio recordings. 254 audio recordings in the development
aged from 7 to 13 years, with a mean age of 10 years. Chifet correspond to repetitions of sentences also appearing i
dren in the ChildIt corpus were evenly distributed by gradethe training set, furthermore 170 audio recordings in tise te
from grade 2 through grade 8. Children in grade 2 weré€t correspond to repetitions of sentences also appearing i
approximately 7 years old while children in grade 8 werethe training set.

approximately 13 years old. The overall duration of audio

recordings in the corpus is 10h:48m. Speech was collected

from 171 children, each child read 58 or 65 sentences S 5 ASR systems

lected from electronic texts concerning literature folatan, o

depending on his/her grade. Each speaker read a differtent se

of sentences which included, however, a set of phoneticallf}'z'l' General DNN-HMM

rich sentences (5-8 sentences) which were repeated by sev- . ) )

eral speakers. Speech was acquired at 16 kHz, with 16 bfthe acoustic features are 13 MFCC, including the zero or-
accuracy, using a Shure SM10A head-worn microphone. Thder coefficient, computed on 20ms frames with 1.0ms overl_ap.
corpus was partitioned into: a training set consisting dada 1he context spans on a 31 frame window on which Hamming
from 115 speakers for a total duration of 7h:15m; a developVindowing is applied. This 403 dimensional features vector
ment set consisting of data from 14 speakers (1 male and 1 f& then projected to a 208 dimensional features vector by ap-
male per grade), for a total durations of Oh:49m (24,880 phonP!ying Discrete Cosine Transform (DCT) and normalised be-
occurrences); a test set consisting of data from 42 speafore being used as input to the DNN. The targets of the DNN
ers balanced with respect to age and gender (that is 3 mal@& the 3039 tied-states obtained from triphone HMM-GMM
and 3 females per grade) for a total duration of of 2h:20n{n0dels based on a set of 48 phonetic units derived from the
(74,596 phone occurrences). Repetitions of phoneticilty r SAM PA Italian alphabet an_d trained on the mixture of adults’
sentences were not included in the development and test se®&d children’s speech (Childlt + APASCI). The DNN has 4
The development set is formed by 767 audio recordings whilfidden layers, each of which contains 1500 elements such
the test set is formed by 2299 audio recordings. 74 audithat the DNN architecture can be summarised as follows: 208
recordings in the development set correspond to repetitiont 1500 X 1500 x 1500 x 1500 x 3039.

of sentences also appearing in the training set, simila2 1 The DNN are trained with the TNet software pack-
audio recordings in the test set correspond to repetitiéns @ge [26]. The DNN weights are initialised randomly and pre-

sentences also appearing in the training set. trained with restricted Boltzmann machines (RBM) [27, 28].
The first layer is pre-trained with a Gaussian-BernouilliNRB
4.1.2. APASCI trained during 10 iterations with a learning rate of 0.00be T

following layers are pre-trained with a Bernouilli-Bernliu
The APASCI speech corpus [25] is a task-independent, higRBM trained during 5 iterations with a learning rate of 0.05.
quality, acoustic-phonetic Italian corpus. APASCI waselev Mini-batch size is 250. For the back propagation trainirg th
oped at ITC-irst and consists of speech data collected fronearning rate is kept to 0.02 as long as the frame accuracy on
194 adult speakers for a total durations of 7h:05m. Acquithe cross-validation set progresses by at least 0.5% betwee
sitions were performed in quiet rooms using a digital audicsuccessive epochs. The learning rate is then halved at each
tape recorder and a high quality close talk microphone. dudiepoch until the frame accuracy on the cross-validation set
signals were down-sampled from 48 kHz to 16 kHz with 16fails to improve by at least 0.1%. The mini-batch size is 512.
bit accuracy. Most of the speaker performed a single recordn both pre-training and training, a first-order momentum of
ing session, while 44 speakers performed two recording se€-5 is applied.
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4.2.2. Agel/gender specific DNN-HMM set of 28 phone labels. Variations in recognition perforogan
. . were validated using the matched-pair sentence test [29] to
The DNN-HMM described above is adapted to each of th.edscertain whether the observed results were inconsistént w

. . ) o he null hypothesis that the output of two systems weresstati
ing data as in [15] tq _obta_m three group speC|f_|c DNN-HMM tically identical. Considered significance levels werg, .01
systems. At recognition time, each utterance is decoddd wit

. - and.001.
the matching group specific DNN-HMM system. Note, how-
ever, that to operate fully automatically this procedureildo
require a classifier to perform the selection of the appeaeri

DNN-HMM system.
5.1. Phone error rate performance

4.3. VTLN
Table 1 presents the PER obtained with the DNN-HMM

In this work we are considering a set of 25 warping factorsaseline, and the VTLN approaches: the VTLN applied to
evenly distributed, with step 0.02, in the range 0.76-1.24MFCC during training and testing (rowTLN-normalisatioh
During both training and testing a grid search over the 2%nd the MFCC features vector augmented with the posterior
warping factors was performed. The acoustic models for scaprobabilities of the warping factors (roWLTN + MFCQ).
ing factor selection, carried out on an utterance-by-attee  The results are compared with PER obtained when using a
basis, were speaker-independent triphone HMM with 1 Gausnatching adapted DNN-HMM (roMDNN-adaptatio). On
sian per state and trained on unwarped children’s and adultthe evaluation set including all the target groups of speak-
speech [23, 24]. ers (Childlt + APASCI) the VTLN normalisation approach
The DNN-warp inputs are the MFCC with a 61 framesimprove the baseline performance by 18% relative (from
context window, DCT projected to a 208 dimensional featured4.29% to 12.00% PER with < .001) whereas the sys-
vector. The targets are the 25 warping factors. The DNN hagem working with the MFCC features vector augmented with
4 hidden layers, each of which contains 500 elements suahe posterior probabilities of the warping factors impeve
that the DNN architecture can be summarised as follows: 20fhe baseline by 9% relative (from 14.29% to 13.12% PER
x 500 x 500 x 500 x 500 x 25. The training procedure is thewith p < .001). The performance difference between VTLN
same as for the DNN acoustic model in the DNN-HMM. and DNN-adaptation (from 12.00% to 11.59% PER) is not
The posterior probabilities obtained with the DNN-warp statistically significant.
are concatenated with the 208-dimensionnal DCT projected
acoustic features vector to produce a 233-dimensional fe%
tures vector that is normalised before being used as input (23

the ENfN';—.hE neWtD_NNlas%c())usltic mo?el haﬁ ?hhitdtﬂenDlily,\TrSWorking with the MFCC features vector augmented with
each of which contains elements such that the athe posterior probabilities of the warping factors impreve

chitecture can then be summarized as follows: 233 x 1500 #he baseline by 10% relative (from 15.56% to 14.10% PER

1500 x 1500 x 1500 x 3039. with p < .001). The performance difference between VTLN
and DNN-adaptation (from 12.80% to 12.43% PER) is not
5. EXPERIMENT RESULTS statistically significant.

For children speakers, the VTLN normalisation approach
prove the baseline performance by 22% relative (from
.56% to 12.80% PER with < .001) and the system

; : : For female adult speakers, the performance differences
The experiments presented here are designed to verifythe f : ’
lowing Fr)]ypothesisp' g %etween the baseline and the VTLN (from 10.91% to 10.41%

PER), between the MFCC features vector augmented with the
e VTLN can be beneficial to the DNN-HMM framework posterior probabilities of the warping factors and the base
when targeting a heterogeneous speaker populatidine (from 10.91% to 10.89% PER) and between VTLN and
with limited amount of training data DNN-adaptation (from 10.41% to 9.65% PER) are not statis-

) tically significant.
e Developing an "all-DNN” approach to VTLN for

DNN-HMM framework, when targeting a heteroge-
neous speaker population, offers a credible alternativ
to the use of VTLN normalised acoustic features or to
the use of age/gender group specific DNN.

For male adult speakers, the system working with the
MFCC features vector augmented with the posterior proba-
bilities of the warping factors improves the baseline by 3%
relative (from 8.62% to 8.34% PER with < .01). The

VTLN normalisation approach improve the baseline per-
During the experiments the language model weight is tunetbrmance by 9% relative (from 8.62% to 7.91% PER with
on the development set and used to decode the test set. Re< .001) and the performance difference between VTLN
sults were achieved with a phone loop language model anahd DNN-adaptation (from 7.91% to 7.61% PER) is not
the phone error rate (PER) was computed based on a reducgtdtistically significant.
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Evaluation Set

Childit APASCI () APASCI(m) | Childit + APASCI
Dev | Test Dev | Test Dev | Test Dev | Test
| Baseline | 13.98% [ 15.56%] 10.12%] 10.91%] 10.07%] 8.62% | 12.47%] 14.29%)]

DNN-adaptation 11.68% | 12.43%| 8.30% | 9.65% | 9.33% | 7.61% | 10.39%| 11.59%
VTLN-normalisation| 11.94% | 12.80%| 9.06% | 10.41%| 9.76% | 7.91% | 10.81%| 12.00%
VLTN + MFCC 12.67 % | 14.10%| 9.02% | 10.89%| 9.75% | 8.34% | 11.21%| 13.12%

Table 1: Phone error rate achieved with VTLN approaches to DNN-HMM.

5.2. System integration and complexity as the DNN-adaptation with matched training and testing
conditions.

When considering the integration to a complete system, the an giternative approach has been presented in which
DNN adaptation approach requires to train three age/gendgfrcc derived acoustic features are combined with the pos-
group-specific DNN. At runtime, two modalities can be terior probabilities of the VTLN warping factors to obtain a
adopted: a) model selection which requires the use of g,gmented set of features as input to a DNN. This approach
pre-trained a classifier to select the proper DNN-HMM sys 55 peen shown to perform slightly worse than conventional
tem for each utterance to decode, b) multiple decodings witky| N applied to DNN-HMM but it still allows to improve

the three age/gender group-specific DNN-HMM systems angeR performance by up to 10% relative compared to the
keeping the output with the highest likelihood. In the DNN p55ejine. Besides, this approach is the simplest of the thre
adaptation approach, if a target group of speakers is cllanggproaches compared here and the fact that it relies only on
or added, there is the need to train a new DNN correspondingnN makes it promising for future developments such as

to the new target group of speakers. Approaches relying ogin; optimisation of the DNN-warp and the DNN-HMM.
VTLN are more general in this sense. At runtime, normal-

ising the MFCC with VTLN requires a two-pass decoding
system which is unsuited for online applications. The ap- 7. REFERENCES
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