
Direct Word Graph Rescoring Using A* Search and RNNLM

Shahab Jalalvand , Daniele Falavigna

Human Language Technology unit, Fondazione Bruno Kessler, via Sommarive 18, Trento, Italy
{jalalvand,falavi}@fbk.eu

Abstract

Neural Network Language Models (NNLM) have shown a

significant improvement in Automatic Speech Recognition

(ASR), however, they are usually too complex to be used

directly during trellis search. Although, one could use NNLM

for rescoring the N-best list, we propose in this paper a novel

method for rescoring directly the hypotheses contained in the

word graphs, generated with an ASR decoder. The method,

based on the A* search, rescores the partial theories of the

stack with a linear combination of the acoustic model score

and multiple language models (including NNLM) scores. We

compared, on an ASR task consisting of the automatic

transcription of weather news, the A* based approach with N-

best rescoring and iterative confusion network decoding.

Using the proposed method, we measured a relative Word

Error Rate (WER) improvement of about 6%, on the given

task, with respect to using the baseline system. The latter

improvement is comparable with that obtained with N-best list

based rescoring method.

Index Terms: neural network language model, word

graph, rescoring, confusion network, A* stack search

1. Introduction

The Language Model (LM), usually trained on a large set of

text data, allows predicting the a priori probability of a word

sequence W. In ASR, it is used in combination with the

acoustic model (AM) to estimate the maximum a posterior

probability of a sequence of acoustic observations.

N-gram based LMs ‎[1] are limited by both the use of

discrete probability densities, to compute P[W], and the need

for implementing back-off procedures to handle n-grams not

seen in the training set. In the literature, different smoothing

methods have been discussed for discounting and

redistributing probabilities ‎[2]‎[3]‎[4], whose performance

mostly depend on the size of training data.

More recently, to overcome above shortcomings,

continuous space LMs based on: back-propagation neural

network ‎[5], neural network exploiting deep learning ‎[6] and

recurrent neural network LM (RNNLM) ‎[7], have

demonstrated excellent performance to predict the a priori

probability of a sequence of words. However, because of the

present difficulty to train deep neural network LMs and

RNNLMs over large amount of training data they are usually

trained on a limited set of text data (e.g. tens of millions of

words). This set of data is usually selected to be in a specific

application domain, where the ASR system will have to work.

In addition, it is difficult to take into account the long-

spanning capabilities of both deep neural network LM and

RNNLM when the search is carried out over the trellis of

acoustic frames. For this reason, a usual approach is that of

generating N-best lists by means of a “general-purpose” n-

gram LM and rescoring them with the domain-specific

RNNLM ‎[8] or deep neural network LM (DNNLM).

Nevertheless, N-best list generation is rather complex if N is

large and there is no guarantee that the best hypothesis is

present in each list. For this reason, some approaches

exploiting hill climbing search type over either word lattices or

Confusion Networks (CN) has been proposed in ‎[9]‎[10]. Hill

climbing search exploits an iterative decoding method for

rescoring each hypothesis in a CN or word lattice using the

RNNLM probability of a whole sentence hypothesis.

However, implementing hill-climbing iterative decoding

requires a significant computational effort, especially if the

word lattice, or the corresponding CN contains a large number

of transitions.

In order to rescore the full search space defined by the

word graphs (WGs) and, at the same time, taking advantage

from the long-spanning prediction capability of RNNLM, we

propose to rescore all of the partial hypotheses contained in

the given WG with a linear combination of LMs, including

RNNLM. Partial WG hypotheses are generated via A* stack

decoding ‎[11]‎[12]‎[13] using as look-ahead function the

backward scores of the original WG. We tested the proposed

approach on a task consisting of the automatic transcription of

weather reports. On this latter we compared performance of

A* stack rescoring approach with both N-best list and iterative

CN rescoring, both in terms of word error rate (WER) and

Oracle Word Error Rate (OWER). The latter is defined as the

WER of the best hypothesis contained in the given search

space, represented by an N-best list, a word graph or a

confusion network.

The rest of this paper is organized as follows. In Section 2

we describe audio and text corpora, used to train the various

acoustic models (AMs) and LMs. In the same Section we also

give some details on the ASR systems used to generate the

search spaces for rescoring. In Section 3 the rescoring

approaches used in the experiments, namely: N-best list based

method, iterative decoding over CNs and the proposed A*

based approach are described in details. Results and

experiments are reported in Section 4, and finally, Section 5

concludes the paper.

2. Description of AM/LM training

Within the framework of the European project EU-BRIDGE1,

an ASR evaluation campaign has been organized in order to

transcribe weather reports. To do this, a set of training,

development and test data have been acquired and delivered to

the partners involved in the campaign.

2.1. AM training

Audio training data consists of around 120 hours of weather

forecast. A part of these recordings is associated with captions

which are not verbatim transcription of the audio itself, but

sometimes they are closely related to it.

1 This work has been partially founded by the European

project EU-BRIDGE, under the contract FP7-287658.

A lightly supervised ‎[14] approach was employed in order

to train domain-specific triphone Hidden Markov Models

(HMMs). The procedure consisted of:

1. Training a set of acoustic models over a large

general-domain corpus from EURONEWS channel

(about 525 hours).

2. Automatically transcribing the above mentioned

120-hour weather news using the latter acoustic

model and an 4-gram LM adapted to the weather-

domain text data.

3. Selecting the audio segments where the related

automatic transcription and caption matches.

4. Training weather-specific HMMs on the selected

speech segments.

The last three steps of the above procedure were repeated

two times, resulting in a portion of selected in-domain speech

that grew to 57 hours and then to 65 hours. Given the modest

improvement in the third iteration, the procedure was not

repeated further. In conclusion, the method allowed to

automatically select about 55% of the provided training

speech, which was considered satisfactory to train domain

specific AMs.

Note that in the experiments reported in Section 4, we

have compared the performance of the various rescoring

approaches using three different sets of HMMs, named: AM1,

AM2 and AM3, respectively trained on: 1) the general

broadcast news corpus (525 hours); 2) on the set of weather

audio reports selected after the first iteration of the lightly

supervised training procedure (57 hours); and 3) on the portion

resulting from the application of the second lightly supervised

training iteration (65 hours).

Table 1 gives some statistics on the audio data selected to

train the three sets of AMs mentioned above, as well as

statistics on development (Dev) and Test sets exploited in the

experiments.

Table 1. The exploited audio and text data

A
u

d
io

 d
at

a

Set ≈Hours
≈Running
words

Domain

Train1 (AM1) 525 hr 3 G General

Train2 (AM2) 57 hr 638 K Weather

Train3 (AM3) 65 hr 711 K Weather

Dev 1.3 hr 12 K Weather

Test 1.3 hr 12 K Weather

T
ex

t
d

at
a

Set ≈Words
≈Vocab

size
Domain

Subtitles 1 G 8 K Weather

Auto-sel 100 G 277 K
Related to

weather

Google-news 1.6 T 300 K General

Dev 12 K 1 K Weather

2.2. LM training

As for audio data, a set of weather reports, containing about

one millions of words (named Subtitles in Table 1), has been

made available. From this latter we trained an in-domain 4-

gram LM which was successively used to automatically select

documents from a general corpus of news, named "Google-

news". This latter is an aggregator of news provided and

operated by Google that collects news from many different

sources, in different languages. We download daily news from

this site, filter-out useless tags and collect texts. Up to now our

version of "Google-new" text corpus contains around 1,6

billion words. We ordered documents of “Google-news”

according to increasing perplexity (computed with the

previously mentioned in-domain LM) and we selected the

documents with lowest perplexities to build a corpus of about

100 million words ‎[15], over which a 4-gram back-off LM was

trained with the IRSTLM toolkit ‎[16], using the modified

Kneser-Ney interpolation method. Then, the latter LM was

adapted to the weather domain using the 1MW weather

subtitles and the mixture adaptation method as provided by the

same IRSTLM toolkit. The latter, mixture adapted LM

(hereinafter we will name it as LMbase), together with a

lexicon, was exploited to build the Finite State Network used

during two ASR decoding passes. Then, from the in-domain

1MW corpus, we trained a 4-gram back-off LM, using the

Kneser-Ney smoothing method and the SRI toolkit ‎[17].

Hereinafter we will name this LM as LMin. Finally, on the

same 1MW in-domain corpus we trained an RNNLM with 450

hidden neurons and 1000 classes using the RNNLM toolkit

‎[18]. Table 1 reports also some statistics related to LM training

data.

On the weather development set we measured the

perplexity values of the various trained LMs, as well as of an

additional linearly interpolated LMs: RNNLM+LMin. In this

case interpolation coefficients were computed by means of the

expectation/maximization algorithm with the aim of

minimizing the perplexity on the development data. Table 2

gives the obtained perplexity results (more details on the latter

evaluation have been published in ‎[19]) and the corresponding

Out-Of-Vocabulary (OOV) rates. We point out that PPL value

related to LMbase in Table 2 has been computed with

IRSTLM toolkit ‎[16], while the other PPL values in Table 2

were computed with RNNLM toolkit ‎[18]. Since perplexity is

computed differently by the two toolkits, the corresponding

values in Table 2 are not directly comparable. Nevertheless, it

is worthy to note the PPL improvement gained with the

linearly interpolated LM: RNNLM+LMin. The latter was used

in the rescoring experiments reported below.

Table 2. Perplexity values (PPL) and Out-Of-

Vocabulary (OOV) rate of the different LMs

LM PPL OOV%

LMbase 45.8 0.0

LMin 39.6 0.04

RNNLM 34.7 0.04

RNNLM+LMin 31.6 0.04

2.3. Word graphs generation

The manually detected segments of the development/test set

are grouped by a segment clustering method, based on the

Bayesian information criterion, then, cluster-wise feature

normalization and acoustic model adaptation are applied. The

ASR system employs LMbase, along with continuous density,

state-tied, cross-word, gender-independent triphone HMMs as

the acoustic models in a two decoding recognition passes.

Speaker adaptively trained HMMs used in the first

decoding pass were trained ‎[20]‎[21] with acoustic

observations obtained through: 1) unsupervised, cluster based

normalization of 52 dimensional acoustic feature vectors (to

this purpose constrained maximum, likelihood linear

regression ‎[22] is used) and 2) Heteroscedastic Linear

Discriminant Analysis (HLDA) projection of 52 dimensional

normalized feature vectors into 39 dimensional ones. In the

second decoding pass, speaker adaptively trained triphone

HMMs were trained on normalized, HLDA projected, acoustic

features by applying a cluster based, affine transformation

estimated w.r.t triphone HMMs, with a single Gaussian

density per state, through CMLLR ‎[20]‎[21]‎[22]. In both cases,

triphone HMMs were trained through a conventional

maximum likelihood procedure. At recognition stage, the

output of the first decoding pass is exploited as supervision for

CMLLR-based feature normalization and MLLR-based

acoustic model adaptation. A frame synchronous Viterbi

beam-search is used to find the most likely word sequence.

In the second recognition pass, the decoder generates for

each given speech utterance the best word sequence, that was

used to evaluate the baseline performance, as well as a word

graph. From the latter the list of related N-best hypotheses was

computed as well as a confusion network. The graph error rate

measured on the utterances of the development set, using the

best set of available AMs, resulted to be 4.3%, around 1/3 of

the related WER.

3. Rescoring approaches

In this section, starting from simple N-best list rescoring, we

go through the state-of-the-art iterative CN decoding approach

and we end with our proposed method which is based on A*

stack rescoring.

3.1. N-best list rescoring

N-best lists, generated from WGs, provide for each of their

ordered hypothesis the related acoustic log-likelihood and

baseline LM probability. In this work a new LM score is

obtained through linear interpolation of baseline LM

probability, RNNLM probability and in-domain LM

probability. Then, the hypothesis score, computed summing

the acoustic log-likelihood (divided by the LM weight) to the

interpolated LM probability, is exploited to reorder each list.

In the experiments reported below a value of N=100 was used,

while LM interpolation coefficients, as well as the LM weight,

were estimated by means of a grid search with the aim of

minimizing the WER on the development set.

3.2. Iterative CN decoding

The word graph transitions having a specific amount of time

overlap could be merged into a bin. A confusion network ‎[23]

is a chain of these bins. All the transitions in a bin are ordered

according to their posterior probability. Therefore, the 1-best

hypothesis is obtained by concatenation of the first transition

in the consequent bins.

Iterative decoding ‎[24] reorders each transition in each bin

of a given CN according to a linear combination of scores. For

experiments reported below we have used: posterior

probability of the transition itself, baseline LM probability of

the “locally best” sentence hypothesis (the latter is obtained

joining the best left context and the best right context),

RNNLM probability of the “locally best” sentence hypothesis

and in-domain LM probability of the “locally best” sentence

hypothesis. Over a grid of values, we estimated the

interpolation weights in order to minimize the WER on the

development set.

At each step, just one word is changed and regarding to

this change, if the better score is achieved, the change is

applied. Therefore, it is guaranteed that after each step a better

solution has been found. Like any other hill climbing

algorithm, there is the possibility of reaching local minima. To

reduce this effect we the simulated annealing algorithm

proposed in ‎[9] can be used.

Note that, due to the merging procedure applied when a

CN is built, the OWER of a CN decreases in comparison to

that related to the corresponding WG or N-best list. At the

same time, however, acoustic likelihoods contained in the

original WG are missed. This fact prevents direct combination

of the LM probability with AM probability for computing

hypothesis scores.

3.3. A* stack decoding

A* stack search algorithm ‎[11]‎[12][13] on a WG starts with

expanding the first node, pushing the partial paths (sometimes

called partial theories) into a stack and sorting them with

regard to a total score. The total score is given by the sum of

the score of the partial theory and the score furnished by a

look-ahead function (see Eq. 1). Here, the look-ahead function

of node i, LH(i) is the total backward score associated to this

node (i.e. the logarithm of the sum of the probabilities of all

paths starting from i reached by the partial path ending in the

final state of the WG). Note that the chosen look-ahead

function is an admissible heuristic of the future cost of the best

path. Hence, for jth partial theory reaching at the node i (Thi
j),

the total score ST is given by:

  

        i

jLMin

i

jRNNLM

i

jLMbase

i

j

i

j

i

ji

j

i

j

i

jT

ThPThPThLMThLM

ThLM
ThAM

ThS

iLHThSThS

).1(.).1(.

log
)(

)(

)()()(











 (1)

where, AM is the AM log-likelihood of the theory, PLMbase

is the corresponding probability given by LMbase, PRNNLM is

the probability given by the RNNLM and PLMin is the

probability given by LMin. The LM weight α, the coefficients

β and γ are estimated in order to minimize the WER on the

development set. We illustrate the efficiency of the A* stack

rescoring approach using a real example given in Figure 1,

where a WG is plotted whose reference transcription is “some

sunshine in-between”.

The traditional A* stack search (Figure 1.b), at each step

(1, 2, … , 5), popes the top element of the stack, expands the

node and pushes the partial theories into the stack and sorts the

stack. At any crucial step, like step (3), if the algorithm fails to

rank the correct partial theory, because of the bad score given

by the baseline LM, there is the hazard of missing the correct

theory in the final list. In this example, at step 4, the stack

overflows, and therefore, the algorithm must drop the last

theory which is actually the correct one. Hereby, we miss the

correct solution not only in the 1-best, but also in the final N-

best list. To alleviate this issue, we enhance the algorithm in

ranking the partial theories by using the scores given by Eq

(1).

In this way, at the crucial step 3, the algorithm successes

in ranking the correct theory and places it on top. At step 4, the

top element of the stack is popped, expanded and labeled as a

terminator solution. That is, the backward score of this

solution is zero, whereby, this theory will have a higher

chance to survive in the next steps.

4. Experiments and results

Experiments have been carried out on the given

development/test sets using the acoustic models AM1, trained

on broadcast news domain, AM2 and AM3, trained on weather

domain (see Section ‎2.1). Using each set of acoustic models,

along with LMbase as the language model, we generate the 1-

best, 100-best, WGs and CNs for each utterance in the

development/test set, as explained in Sections ‎2.3 and ‎3 above.

Results obtained with each one of the rescoring approaches

described in Section ‎3 are reported in Table 3. In this Table,

the OWER estimated over 100-best “rescored” lists of the

development set is also reported. This means that each OWER

value reported in Table 3 is computed from a 100-best list

generated with the corresponding rescoring method.

Table 3. %WER and %OWER of baseline systems,

using different AMs and rescoring methods.

AM Rescoring method
OWER of

100-best Dev

WER on

Dev

WER on

Test

AM1

Baseline (no rescoring) - 13.9 12.6

N-best list rescoring 10.9 13.3 (+4.3) 12.2(+3.1)

Iterative CN rescoring 10.8(+0.9) 13.7 (+1.4) 12.6(0.0)

A* stack rescoring 10.5(+3.6) 13.1(+5.7) 11.9(+5.5)

AM2

Baseline (no rescoring) -- 12.2 11.2

N-best list rescoring 10.1 11.8(+3.2) 10.4(+7.1)

Iterative CN rescoring 9.9(+1.9) 12.1(+0.8) 11.1(+0.8)

A* stack rescoring 9.5(+5.9) 11.6(+4.9) 10.3(+8.0)

AM3

Baseline (no rescoring) -- 11.3 10.1

N-best list rescoring 9 10.6(+6.1) 9.3(+7.9)

Iterative CN rescoring 9(0.0) 11.1(+1.7) 10.0(+0.9)

A* stack rescoring 8.5(+5.5) 10.6(+6.1) 9.3(+7.9)

For N-best list rescoring we observe significant

improvements with all AMs, and over both development and

test set. This is in line with previous works in the literature that

used RNNLM for N-best list rescoring.

For iterative decoding with CNs it has to be observed that

the CNs include a lot of null bins that dramatically increase the

decoding time. Therefore, we decided to remove all bins

whose first transition is null (or silence) with a posterior

probability higher than 0.99. For using simulated annealing we

set the initial temperature as -2000 and the delta as -200.

Looking at Table 3, relative improvements over baseline

systems is reached using CN iterative decoding, with all the

exploited AMs, although it fails to outperform the other

rescoring methods. This is not completely in agreement with

previous works in the literature ‎[9]‎[24], however, as

mentioned in the introduction, iterative decoding could also be

applied to rescore directly the word graphs, e.g., using the

methods described in ‎[9]‎[10]. This comparison will be part of

future works.

Finally, we observe in Table 3 that the usage of A* based

rescoring approach allows achieving slightly better

performance, in terms of %WER, than N-best list based

approach when the worst acoustic models (AM1 and AM2) are

used. Instead, the same %WER (10.6%) of N-best list is

obtained when the best acoustic model (AM3) is used. Despite

this fact, we observe that %OWER improves significantly

using A*, i.e. there is still room for decreasing the related

%WER, e.g. with RNNLM trained on a bigger set of data.

5. Conclusions

In this paper, we have proposed a new method for rescoring

word graphs exploiting RNNLM. We have reported

preliminary results showing improvements in performance

with respect to the baseline system, N-best list and iterative

CN decoding approaches. Much more work still need to be

done in order to: 1) show the effectiveness of the proposed

method on application domains larger than the one analyzed

for this work (transcription of weather reports; 2) estimate the

computational requirements of the approach and compare it

with other rescoring methods; 3) verify if larger improvements

could be achieved with better LMs used for rescoring (e.g.

bigger RNNLM, factored LM, exponential LMs, etc).

Figure 1. An example of A* stack search on a word graph; a) a word graph; 2) a normal A* stack search

procedure; 3) a rescored A* stack search procedure. (Reference: “some sunshine in-between”)

References

[1] Jelinek, F., ”Statistical methods for speech recognition”, MIT

press, 1997.
[2] Chen, S.F., and Goodman, J., “An empirical study of smoothing

techniques for language modeling”, Computer Speech and

Language, no. 13, pp. 359-394, 1999.
[3] Kneser, R. and Ney, H., “Improved backing-off for n-gram

Language Modeling”, in proc. of ICASSP, pp. 181-184, 1995.

[4] Gale, W.A., “Good-Turing smoothing without tears”, Journal of
Quantitative Linguistics, 2vol. 2, pp. 17-237, 1995.

[5] Schwenk, H., “Continuous space language models”, Computer

Speech and Language, vol. 21 no. 3, pp. 492-518, 2007.
[6] Arisoy, E., Sainath, T. N., Kingsbury, B., and Ramabhadran, B.,

“Deep neural network language models”, Proceedings of the

NAACL-HLT, pp. 20-28, 2012.
[7] Mikolov, T., et al. “Recurrent neural network based language

model”, in proc. Of INTERSPEECH, pp. 1045-1048, 2010..

[8] Sundermeyer, M., Oparin, I., Gauvain, JL., Freiberg, B.,

Schlüter, R. and Ney, H., “Comparison of feedforward and

recurrent neural network language models”, in proc. of ICASSP,

pp. 8430-8434, 2013.
[9] Deoras, A., Jelinek, F., and Church, K., “Search and decoding

strategies for complex lexical modeling in LVCSR”, PhD thesis,

Johns Hopkins University, 2011.
[10] Rastrow, A., Dreyer, M., Sethy, A. and Khudanpur ,S., “Hill

climbing on speech lattices: a new rescoring framework”, proc.
of ICASSP, pp. 5032-5035, 2011.

[11] Douglas, P.B., “Algorithms for an optimal A* search and

linearizing the search in the stack decoder”, in proc. of ICASSP,
pp. 200-205, 1991.

[12] Douglas, P.B., “An efficient A* stack decoder algorithm for

continuous speech recognition with a stochastic language
model”, proc. of ICASSP, vol. 1, pp. 25-28, 1992.

[13] Knuth, D.E., “The art of computer programming”, vol. 2,

Addison Wesley, 2011.

[14] Lamel, L., Gauvain, J.L. and Adda, G., “Investigating lightly

supervised acoustic model training”, in proc. of ICASSP, vol. 1,

pp. 477-480, 2001.
[15] Maskey, S., Sethy, A., “Resampling auxiliary data for language

model adaptation in machine translation for speech”, in proc. of

ICASSP, pp. 4817-4820, 2009.
[16] Federico, M., Bertoldi, N., and Cettolo, M., “IRSTLM: an open

source toolkit for handling large scale language models”, in proc.

of INTERSPEECH, pp. 1618-1621, 2008.
[17] Stolcke, A., “SRILM-an extensible language modeling toolkit”,

in proc. of NTERSPEECH, pp. 901-904, 2002.

[18] Mikolov, T., et al., “Extensions of recurrent neural network
language model”, in proc. of ICASSP, pp. 5528-5531, 2011.

[19] Jalalvand, S., “Improving language model adaptation using

automatic data selection and neural network”, in proc. of the
Student Research Workshop associated with RANLP, pp. 86-92,

Hissar, Bulgaria, 2013.

[20] Stemmer, G., Brugnara, F. and Giuliani, D., “Using simple target
models for adaptive training”, in proc of ICASSP, vol. 1, pp.

997-1000, 2005.

[21] Giuliani, D., Gerosa, M. and Brugnara, F., “Improved automatic
speech recognition through speaker normalization”, Computer

Speech and Language, vol. 20, pp. 107-123, 2006.

[22] Gales, M.J.F, “Maximum likelihood linear transformations for
HMM-based speech recognition”, Computer Speech and

Language, vol. 12, 75-98, 1998.
[23] Mangu, L., Brill, E. and Stolcke, A., “Finding consensus in

speech recognition: word error minimization and other

applications of confusion networks”, Computer Speech and
Language, vol 14, no. 4, pp. 373-400, 2000.

[24] Deoras, A., and Jelinek, F., “Iterative decoding: A novel re-

scoring framework for confusion networks.” In proc. of IEEE
Automatic Speech Recognition and Understanding Workshop,

pp. 282-286, 2009.

http://www.researchgate.net/researcher/70326503_M_Sundermeyer/
http://www.researchgate.net/researcher/70552564_I_Oparin/
http://www.researchgate.net/researcher/6318911_JL_Gauvain/
http://www.researchgate.net/researcher/2038676690_B_Freiberg/
http://www.researchgate.net/researcher/70170364_R_Schlueter/

