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Abstract 

Neural Network Language Models (NNLM) have shown a 

significant improvement in Automatic Speech Recognition 

(ASR), however, they are usually too complex to be used 

directly during trellis search. Although, one could use NNLM 

for rescoring the N-best list, we propose in this paper a novel 

method for rescoring directly the hypotheses contained in the 

word graphs, generated with an ASR decoder. The method, 

based on the A* search, rescores the partial theories of the 

stack with a linear combination of the acoustic model score 

and multiple language models (including NNLM) scores. We 

compared, on an ASR task consisting of the automatic 

transcription of weather news, the A* based approach with N-

best rescoring and iterative confusion network decoding. 

Using the proposed method, we measured a relative Word 

Error Rate (WER) improvement of about 6%, on the given 

task, with respect to using the baseline system. The latter 

improvement is comparable with that obtained with N-best list 

based rescoring method. 

Index Terms: neural network language model, word 

graph, rescoring, confusion network, A* stack search 

1. Introduction 

The Language Model (LM), usually trained on a large set of 

text data, allows predicting the a priori probability of a word 

sequence W. In ASR, it is used in combination with the 

acoustic model (AM) to estimate the maximum a posterior 

probability of a sequence of acoustic observations.  

N-gram based LMs ‎[1] are limited by both the use of 

discrete probability densities, to compute P[W], and the need 

for implementing back-off procedures to handle n-grams not 

seen in the training set. In the literature, different smoothing 

methods have been discussed for discounting and 

redistributing probabilities ‎[2]‎[3]‎[4], whose performance 

mostly depend on the size of training data.  

More recently, to overcome above shortcomings, 

continuous space LMs based on: back-propagation neural 

network ‎[5], neural network exploiting deep learning ‎[6] and 

recurrent neural network LM (RNNLM) ‎[7], have 

demonstrated excellent performance to predict the a priori 

probability of a sequence of words. However, because of the 

present difficulty to train deep neural network LMs and 

RNNLMs over large amount of training data they are usually 

trained on a limited set of text data (e.g. tens of millions of 

words). This set of data is usually selected to be in a specific 

application domain, where the ASR system will have to work. 

In addition, it is difficult to take into account the long-

spanning capabilities of both deep neural network LM and 

RNNLM when the search is carried out over the trellis of 

acoustic frames. For this reason, a usual approach is that of 

generating N-best lists by means of a “general-purpose” n-

gram LM and rescoring them with the domain-specific 

RNNLM ‎[8] or deep neural network LM (DNNLM). 

Nevertheless, N-best list generation is rather complex if N is 

large and there is no guarantee that the best hypothesis is 

present in each list. For this reason, some approaches 

exploiting hill climbing search type over either word lattices or 

Confusion Networks (CN) has been proposed in ‎[9]‎[10]. Hill 

climbing search exploits an iterative decoding method for 

rescoring each hypothesis in a CN or word lattice using the 

RNNLM probability of a whole sentence hypothesis. 

However, implementing hill-climbing iterative decoding 

requires a significant computational effort, especially if the 

word lattice, or the corresponding CN contains a large number 

of transitions. 

In order to rescore the full search space defined by the 

word graphs (WGs) and, at the same time, taking advantage 

from the long-spanning prediction capability of RNNLM, we 

propose to rescore all of the partial hypotheses contained in 

the given WG with a linear combination of LMs, including 

RNNLM. Partial WG hypotheses are generated via A* stack 

decoding ‎[11]‎[12]‎[13] using as look-ahead function the 

backward scores of the original WG. We tested the proposed 

approach on a task consisting of the automatic transcription of 

weather reports. On this latter we compared performance of 

A* stack rescoring approach with both N-best list and iterative 

CN rescoring, both in terms of word error rate (WER) and 

Oracle Word Error Rate (OWER). The latter is defined as the 

WER of the best hypothesis contained in the given search 

space, represented by an N-best list, a word graph or a 

confusion network. 

The rest of this paper is organized as follows. In Section 2 

we describe audio and text corpora, used to train the various 

acoustic models (AMs) and LMs. In the same Section we also 

give some details on the ASR systems used to generate the 

search spaces for rescoring. In Section 3 the rescoring 

approaches used in the experiments, namely: N-best list based 

method, iterative decoding over CNs and the proposed A* 

based approach are described in details. Results and 

experiments are reported in Section 4, and finally, Section 5 

concludes the paper. 

2. Description of AM/LM training  

Within the framework of the European project EU-BRIDGE1, 

an ASR evaluation campaign has been organized in order to 

transcribe weather reports. To do this, a set of training, 

development and test data have been acquired and delivered to 

the partners involved in the campaign.  

2.1. AM training 

Audio training data consists of around 120 hours of weather 

forecast. A part of these recordings is associated with captions 

which are not verbatim transcription of the audio itself, but 

sometimes they are closely related to it. 

                                                                 

 
1 This work has been partially founded by the European 
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A lightly supervised ‎[14] approach was employed in order 

to train domain-specific triphone Hidden Markov Models 

(HMMs). The procedure consisted of: 

1. Training a set of acoustic models over a large 

general-domain corpus from EURONEWS channel 

(about 525 hours). 

2. Automatically transcribing the above mentioned 

120-hour weather news using the latter acoustic 

model and an 4-gram LM adapted to the weather-

domain text data.  

3. Selecting the audio segments where the related 

automatic transcription and caption matches. 

4. Training weather-specific HMMs on the selected 

speech segments. 

The last three steps of the above procedure were repeated 

two times, resulting in a portion of selected in-domain speech 

that grew to 57 hours and then to 65 hours. Given the modest 

improvement in the third iteration, the procedure was not 

repeated further. In conclusion, the method allowed to 

automatically select about 55% of the provided training 

speech, which was considered satisfactory to train domain 

specific AMs.  

Note that in the experiments reported in Section 4, we 

have compared the performance of the various rescoring 

approaches using three different sets of HMMs, named: AM1, 

AM2 and AM3, respectively trained on: 1) the general 

broadcast news corpus (525 hours); 2) on the set of weather 

audio reports selected after the first iteration of the lightly 

supervised training procedure (57 hours); and 3) on the portion 

resulting from the application of the second lightly supervised 

training iteration (65 hours). 

Table 1 gives some statistics on the audio data selected to 

train the three sets of AMs mentioned above, as well as 

statistics on development (Dev) and Test sets exploited in the 

experiments.  

Table 1. The exploited audio and text data 

A
u

d
io

 d
at

a 

Set ≈Hours 
≈Running 
words 

Domain 

Train1 (AM1) 525 hr 3 G General 

Train2 (AM2) 57 hr 638 K Weather 

Train3 (AM3) 65 hr 711 K Weather 

Dev 1.3 hr 12 K Weather 

Test 1.3 hr 12 K Weather 

T
ex

t 
d

at
a 

Set ≈Words 
≈Vocab 

size 
Domain 

Subtitles  1 G 8 K Weather 

Auto-sel 100 G 277 K 
Related to 

weather 

Google-news  1.6 T 300 K General 

Dev 12 K 1 K Weather 

2.2. LM training 

As for audio data, a set of weather reports, containing about 

one millions of words (named Subtitles in Table 1), has been 

made available. From this latter we trained an in-domain 4-

gram LM which was successively used to automatically select 

documents from a general corpus of news, named "Google-

news". This latter is an aggregator of news provided and 

operated by Google that collects news from many different 

sources, in different languages. We download daily news from 

this site, filter-out useless tags and collect texts. Up to now our 

version of "Google-new" text corpus contains around 1,6 

billion words. We ordered documents of “Google-news” 

according to increasing perplexity (computed with the 

previously mentioned in-domain LM) and we selected the 

documents with lowest perplexities to build a corpus of about 

100 million words ‎[15], over which a 4-gram back-off LM was 

trained with the IRSTLM toolkit ‎[16], using the modified 

Kneser-Ney interpolation method. Then, the latter LM was 

adapted to the weather domain using the 1MW weather 

subtitles and the mixture adaptation method as provided by the 

same IRSTLM toolkit. The latter, mixture adapted LM 

(hereinafter we will name it as LMbase), together with a 

lexicon, was exploited to build the Finite State Network used 

during two ASR decoding passes. Then, from the in-domain 

1MW corpus, we trained a 4-gram back-off LM, using the 

Kneser-Ney smoothing method and the SRI toolkit ‎[17]. 

Hereinafter we will name this LM as LMin. Finally, on the 

same 1MW in-domain corpus we trained an RNNLM with 450 

hidden neurons and 1000 classes using the RNNLM toolkit 

‎[18]. Table 1 reports also some statistics related to LM training 

data. 

On the weather development set we measured the 

perplexity values of the various trained LMs, as well as of an 

additional linearly interpolated LMs: RNNLM+LMin. In this 

case interpolation coefficients were computed by means of the 

expectation/maximization algorithm with the aim of 

minimizing the perplexity on the development data. Table 2 

gives the obtained perplexity results (more details on the latter 

evaluation have been published in ‎[19]) and the corresponding 

Out-Of-Vocabulary (OOV) rates. We point out that PPL value 

related to LMbase in Table 2 has been computed with 

IRSTLM toolkit ‎[16], while the other PPL values in Table 2 

were computed with RNNLM toolkit ‎[18]. Since perplexity is 

computed differently by the two toolkits, the corresponding 

values in Table 2 are not directly comparable. Nevertheless, it 

is worthy to note the PPL improvement gained with the 

linearly interpolated LM: RNNLM+LMin. The latter was used 

in the rescoring experiments reported below. 

Table 2. Perplexity values (PPL) and Out-Of-

Vocabulary (OOV) rate of the different LMs  

LM PPL OOV% 

LMbase 45.8 0.0 

LMin 39.6 0.04 

RNNLM 34.7 0.04 

RNNLM+LMin 31.6 0.04 

2.3. Word graphs generation 

The manually detected segments of the development/test set 

are grouped by a segment clustering method, based on the 

Bayesian information criterion, then, cluster-wise feature 

normalization and acoustic model adaptation are applied. The 

ASR system employs LMbase, along with continuous density, 

state-tied, cross-word, gender-independent triphone HMMs as 

the acoustic models in a two decoding recognition passes.  

Speaker adaptively trained HMMs used in the first 

decoding pass were trained ‎[20]‎[21] with acoustic 



observations obtained through: 1) unsupervised, cluster based 

normalization of 52 dimensional acoustic feature vectors (to 

this purpose constrained maximum, likelihood linear 

regression ‎[22] is used) and 2) Heteroscedastic Linear 

Discriminant Analysis (HLDA) projection of 52 dimensional 

normalized feature vectors into 39 dimensional ones. In the 

second decoding pass, speaker adaptively trained triphone 

HMMs were trained on normalized, HLDA projected, acoustic 

features by applying a cluster based, affine transformation 

estimated w.r.t triphone HMMs, with a single Gaussian 

density per state, through CMLLR ‎[20]‎[21]‎[22]. In both cases, 

triphone HMMs were trained through a conventional 

maximum likelihood procedure. At recognition stage, the 

output of the first decoding pass is exploited as supervision for 

CMLLR-based feature normalization and MLLR-based 

acoustic model adaptation. A frame synchronous Viterbi 

beam-search is used to find the most likely word sequence. 

In the second recognition pass, the decoder generates for 

each given speech utterance the best word sequence, that was 

used to evaluate the baseline performance, as well as a word 

graph. From the latter the list of related N-best hypotheses was 

computed as well as a confusion network. The graph error rate 

measured on the utterances of the development set, using the 

best set of available AMs, resulted to be 4.3%, around 1/3 of 

the related WER. 

3. Rescoring approaches 

In this section, starting from simple N-best list rescoring, we 

go through the state-of-the-art iterative CN decoding approach 

and we end with our proposed method which is based on A* 

stack rescoring.  

3.1. N-best list rescoring 

N-best lists, generated from WGs, provide for each of their 

ordered hypothesis the related acoustic log-likelihood and 

baseline LM probability. In this work a new LM score is 

obtained through linear interpolation of baseline LM 

probability, RNNLM probability and in-domain LM 

probability. Then, the hypothesis score, computed summing 

the acoustic log-likelihood (divided by the LM weight) to the 

interpolated LM probability, is exploited to reorder each list. 

In the experiments reported below a value of N=100 was used, 

while LM interpolation coefficients, as well as the LM weight, 

were estimated by means of a grid search with the aim of 

minimizing the WER on the development set. 

3.2. Iterative CN decoding  

The word graph transitions having a specific amount of time 

overlap could be merged into a bin. A confusion network ‎[23] 

is a chain of these bins. All the transitions in a bin are ordered 

according to their posterior probability. Therefore, the 1-best 

hypothesis is obtained by concatenation of the first transition 

in the consequent bins.  

Iterative decoding ‎[24] reorders each transition in each bin 

of a given CN according to a linear combination of scores. For 

experiments reported below we have used: posterior 

probability of the transition itself, baseline LM probability of 

the “locally best” sentence hypothesis (the latter is obtained 

joining the best left context and the best right context), 

RNNLM probability of the “locally best” sentence hypothesis 

and in-domain LM probability of the “locally best” sentence 

hypothesis. Over a grid of values, we estimated the 

interpolation weights in order to minimize the WER on the 

development set. 

At each step, just one word is changed and regarding to 

this change, if the better score is achieved, the change is 

applied. Therefore, it is guaranteed that after each step a better 

solution has been found. Like any other hill climbing 

algorithm, there is the possibility of reaching local minima. To 

reduce this effect we the simulated annealing algorithm 

proposed in ‎[9] can be used. 

Note that, due to the merging procedure applied when a 

CN is built, the OWER of a CN decreases in comparison to 

that related to the corresponding WG or N-best list. At the 

same time, however, acoustic likelihoods contained in the 

original WG are missed. This fact prevents direct combination 

of the LM probability with AM probability for computing 

hypothesis scores. 

3.3. A* stack decoding 

A* stack search algorithm ‎[11]‎[12][13] on a WG starts with 

expanding the first node, pushing the partial paths (sometimes 

called partial theories) into a stack and sorting them with 

regard to a total score. The total score is given by the sum of 

the score of the partial theory and the score furnished by a 

look-ahead function (see Eq. 1). Here, the look-ahead function 

of node i, LH(i) is the total backward score associated to this 

node (i.e. the logarithm of the sum of the probabilities of all 

paths starting from i reached by the partial path ending in the 

final state of the WG). Note that the chosen look-ahead 

function is an admissible heuristic of the future cost of the best 

path. Hence, for jth partial theory reaching at the node i (Thi
j), 

the total score ST  is given by: 
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  (1) 

where, AM is the AM log-likelihood of the theory, PLMbase 

is the corresponding probability given by LMbase, PRNNLM is 

the probability given by the RNNLM and PLMin is the 

probability given by LMin. The LM weight α, the coefficients 

β and γ are estimated in order to minimize the WER on the 

development set. We illustrate the efficiency of the A* stack 

rescoring approach using a real example given in Figure 1, 

where a WG is plotted whose reference transcription is “some 

sunshine in-between”. 

The traditional A* stack search (Figure 1.b), at each step 

(1, 2, … , 5), popes the top element of the stack, expands the 

node and pushes the partial theories into the stack and sorts the 

stack. At any crucial step, like step (3), if the algorithm fails to 

rank the correct partial theory, because of the bad score given 

by the baseline LM, there is the hazard of missing the correct 

theory in the final list. In this example, at step 4, the stack 

overflows, and therefore, the algorithm must drop the last 

theory which is actually the correct one. Hereby, we miss the 

correct solution not only in the 1-best, but also in the final N-

best list. To alleviate this issue, we enhance the algorithm in 

ranking the partial theories by using the scores given by Eq 

(1).  

 



In this way, at the crucial step 3, the algorithm successes 

in ranking the correct theory and places it on top. At step 4, the 

top element of the stack is popped, expanded and labeled as a 

terminator solution. That is, the backward score of this 

solution is zero, whereby, this theory will have a higher 

chance to survive in the next steps. 

4. Experiments and results 

Experiments have been carried out on the given 

development/test sets using the acoustic models AM1, trained 

on broadcast news domain, AM2 and AM3, trained on weather 

domain (see Section ‎2.1). Using each set of acoustic models, 

along with LMbase as the language model, we generate the 1-

best, 100-best, WGs and CNs for each utterance in the 

development/test set, as explained in Sections ‎2.3 and ‎3 above. 

Results obtained with each one of the rescoring approaches 

described in Section ‎3 are reported in Table 3. In this Table, 

the OWER estimated over 100-best “rescored” lists of the 

development set is also reported. This means that each OWER 

value reported in Table 3 is computed from a 100-best list 

generated with the corresponding rescoring method. 

Table 3. %WER and %OWER of baseline systems, 

using different AMs and rescoring methods.  

AM Rescoring method 
OWER of 

100-best Dev 

WER on 

Dev 

WER on 

Test 

AM1 

Baseline (no rescoring) - 13.9 12.6 

N-best list rescoring 10.9 13.3 (+4.3) 12.2(+3.1) 

Iterative CN rescoring 10.8(+0.9) 13.7 (+1.4) 12.6(0.0) 

A* stack rescoring 10.5(+3.6) 13.1(+5.7) 11.9(+5.5) 

AM2 

Baseline (no rescoring) -- 12.2 11.2 

N-best list rescoring 10.1 11.8(+3.2) 10.4(+7.1) 

Iterative CN rescoring 9.9(+1.9) 12.1(+0.8) 11.1(+0.8) 

A* stack rescoring 9.5(+5.9) 11.6(+4.9) 10.3(+8.0) 

AM3 

Baseline (no rescoring) -- 11.3 10.1 

N-best list rescoring 9 10.6(+6.1) 9.3(+7.9) 

Iterative CN rescoring 9(0.0) 11.1(+1.7) 10.0(+0.9) 

A* stack rescoring 8.5(+5.5) 10.6(+6.1) 9.3(+7.9) 

For N-best list rescoring we observe significant 

improvements with all AMs, and over both development and 

test set. This is in line with previous works in the literature that 

used RNNLM for N-best list rescoring. 

For iterative decoding with CNs it has to be observed that 

the CNs include a lot of null bins that dramatically increase the 

decoding time. Therefore, we decided to remove all bins 

whose first transition is null (or silence) with a posterior 

probability higher than 0.99. For using simulated annealing we 

set the initial temperature as -2000 and the delta as -200.  

Looking at Table 3, relative improvements over baseline 

systems is reached using CN iterative decoding, with all the 

exploited AMs, although it fails to outperform the other 

rescoring methods. This is not completely in agreement with 

previous works in the literature ‎[9]‎[24], however, as 

mentioned in the introduction, iterative decoding could also be 

applied to rescore directly the word graphs, e.g., using the 

methods described in ‎[9]‎[10]. This comparison will be part of 

future works. 

Finally, we observe in Table 3 that the usage of A* based 

rescoring approach allows achieving slightly better 

performance, in terms of %WER, than N-best list based 

approach when the worst acoustic models (AM1 and AM2) are 

used. Instead, the same %WER (10.6%) of N-best list is 

obtained when the best acoustic model (AM3) is used. Despite 

this fact, we observe that %OWER improves significantly 

using A*, i.e. there is still room for decreasing the related 

%WER, e.g. with RNNLM trained on a bigger set of data. 

5. Conclusions 

In this paper, we have proposed a new method for rescoring 

word graphs exploiting RNNLM. We have reported 

preliminary results showing improvements in performance 

with respect to the baseline system, N-best list and iterative 

CN decoding approaches. Much more work still need to be 

done in order to: 1) show the effectiveness of the proposed 

method on application domains larger than the one analyzed 

for this work (transcription of weather reports; 2) estimate the 

computational requirements of the approach and compare it 

with other rescoring methods; 3) verify if larger improvements 

could be achieved with better LMs used for rescoring (e.g. 

bigger RNNLM, factored LM, exponential LMs, etc).  

Figure 1. An example of A* stack search on a word graph; a) a word graph; 2) a normal A* stack search 

procedure; 3) a rescored A* stack search procedure. (Reference: “some sunshine in-between”)  
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