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Abstract

This work describes the statistical machine translation
(SMT) systems of RWTH Aachen University developed for
the evaluation campaign International Workshop on Spoken
Language Translation (IWSLT) 2014. We participated in
both the MT and SLT tracks for the English!French and
German!English language pairs. We apply the identical
training pipeline and models on both language pairs. Our
state-of-the-art phrase-based baseline systems are augmented
with maximum expected BLEU training for phrasal, lexical
and reordering models. Further, we apply rescoring with
novel recurrent neural language and translation models. The
same systems are used for the SLT track, where we addition-
ally perform punctuation prediction on the automatic tran-
scriptions employing hierarchical phrase-based translation.
We are able to improve RWTH’s 2013 evaluation systems
by 1.7-1.8% BLEU absolute.

1. Introduction

We describe the statistical machine translation (SMT) sys-
tems developed by RWTH Aachen University for the evalu-
ation campaign of IWSLT 2014. We participated in the ma-
chine translation (MT) track and the spoken language trans-
lation (SLT) track for the language pairs English!French as
well as German!English. We apply the identical training
pipeline and models on both language pairs using a state-of-
the-art phrase-based system. The pipeline include a hierar-
chical reordering model, word class (cluster) language mod-
els, discriminative phrase training and rescoring with novel
recurrent neural language and translation models. For the
spoken language translation task, the ASR output is enriched
with punctuation and casing. The enrichment is performed
by a hierarchical phrase-based translation system.

This paper is organized as follows. In Section 2 we de-
scribe our translation software and baseline setups. Sections
2.4 and 2.5 provide further details about our discriminative
phrase training and the recurrent neural network models. Our
experiments for each track are summarized in Section 3 and
we conclude with Section 4.

2. SMT Systems
For the IWSLT 2014 evaluation campaign, RWTH utilized
state-of-the-art phrase-based and hierarchical translation sys-
tems. GIZA++ [1] is employed to train word alignments. We
evaluate in case-insensitive fashion, using the BLEU [2] and
TER [3] measures.

2.1. Phrase-based Systems

Our phrase based decoder is the implementation of the source
cardinality synchronous search (SCSS) procedure described
in [4] in RWTH’s open-source SMT toolkit Jane 2.3 1 [5].
We use the standard set of models with phrase translation
probabilities and lexical smoothing in both directions, word
and phrase penalty, distance-based reordering model, n-gram
target language models and and enhanced low frequency fea-
ture [6]. The parameter weights are optimized with MERT
[7] towards the BLEU metric. Additionally, we make use of a
hierarchical reordering model (HRM) [8], a high-order word
class language model (wcLM) [9], a discriminative phrase
training scheme (cf. Section 2.4) and rescoring with re-
current neural network language and translation models (cf.
Section 2.5).

2.2. Hierarchical Phrase-based System

For our hierarchical setups, we employed the open source
translation toolkit Jane [10], which has been developed at
RWTH and is freely available for non-commercial use. In
hierarchical phrase-based translation [11], a weighted syn-
chronous context-free grammar is induced from parallel
text. In addition to contiguous lexical phrases, hierarchi-
cal phrases with up to two gaps are extracted. The search
is carried out with a parsing-based procedure. The standard
models integrated into our Jane systems are: Phrase transla-
tion probabilities and lexical smoothing probabilities in both
translation directions, word and phrase penalty, binary fea-
tures marking hierarchical phrases, glue rule, and rules with
non-terminals at the boundaries, extended low frequency fea-
ture and an n-gram language model. We utilize the cube
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pruning algorithm [12] for decoding.

2.3. Backoff language models

Each translation system uses three backoff language mod-
els that are estimated with the KenLM toolkit [13]: A large
general domain 5-gram LM, an in-domain 5-gram LM and
a 7-gram word class language model (wcLM). All of them
use interpolated Kneser-Ney smoothing. For the general do-
main LM, we first select 1

2 of the English Shuffled News,
and 1

4 of the French Shuffled News as well as both the En-
glish and French Gigaword corpora by the cross-entropy dif-
ference criterion described in [14]. The selection is then con-
catenated with all available remaining monolingual data and
used to build and unpruned language model. The in-domain
language models are estimated on the TED data only. For
the word class LM, we train 200 classes on the target side of
the bilingual training data using an in-house tool similar to
mkcls. With these class definitions, we apply the technique
shown in [9] to compute the wcLM on the same data as the
general-domain LM.

2.4. Maximum Expected BLEU Training

Discriminative training is a powerful method to learn a large
number of features with respect to a given error metric. In
this work we learn three types of features under a maximum
expected BLEU objective [15]. We perform discriminative
training on the TED portion of the data, which is high qual-
ity in-domain data of reasonable size. This makes training
feasible while at the same time providing an implicit domain
adaptation effect. Similar to [15], we generate 100-best lists
on the training data which are used as training samples for
a gradient based update method. A leave-one-out heuristic
[16] is applied to circumvent over-fitting. Here, we follow
an approach similar to [17], where each feature type is first
discriminatively trained, then condensed into a single feature
for the log-linear model combination and finally optimized
with MERT. In a first pass, we simultaneously train phrase
pair features and phrase-internal word pair features, adding
two models to the log-linear combination. Afterwards we
perform a second pass focusing on reordering, with the iden-
tical feature set as the HRM, resulting in an additional six
models for log-linear combination: Three orientation classes
(monotone, swap and discontinuous) in both directions. As
the training procedure is iterative, we select the best iteration
after performing MERT.

2.5. Recurrent Neural Network Models

All systems apply rescoring on 1000-best lists using recur-
rent language and translation models. The recurrency is
handled with the long short-term memory (LSTM) architec-
ture [18] and we use a class-factored output layer for in-
creased efficiency as described in [19]. All neural networks
were trained on the TED portion of the data with 2000 word
classes. In addition to the recurrent language model (RNN-
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Figure 1: Architecture of the deep recurrent bidirectional
translation model. By (+) and (�), we indicate a process-
ing in forward and backward time directions, respectively.
The inclusion of the dashed parts leads to a bidirectional
joint model, which was not applied in this work. A single
source projection matrix is used for the forward and back-
ward branches.

LM), we apply the deep bidirectional word-based translation
model (RNN-BTM) described in [20]. This requires a one-
to-one word alignment, which is generated by introduction
of e tokens and using an IBM1 translation table. We ap-
ply the bidirectional version of the translation model, which
uses both forward and backward recurrency in order to take
the full source context into account for each translation deci-
sion. The language models are set up with 300 nodes in both
the projection and the hidden LSTM layer. For the BTM, we
use 200 nodes in all layers, namely the forward and back-
ward projection layers, the first hidden layers for both for-
ward and backward processing and the second hidden layer,
which joins the output of the directional hidden layers. The
architecture of the BTM network is shown in Figure 1.

3. Experimental Evaluation

3.1. English!French

For the English!French task, the word alignment was
trained with GIZA++ and we applied the phrase-based de-
coder implemented in Jane. We used all available parallel
data for training the translation model. As backoff language
models, the baseline contains a general-domain LM, an in-
domain LM and a word class LM (wcLM), which are de-
scribed in Section 2.3. The hierarchical reordering model
(HRM) is also contained in the baseline. Experimental re-
sults are given in Table 1. By maximum expected BLEU
training of phrasal and lexical features, the baseline is im-
proved by 0.7% BLEU absolute on tst2010 and 1.5%



BLEU absolute on tst2011. Including the discriminatively
trained reordering model yields further gains of 0.3 and 0.1
BLEU points. The recurrent language model gives us an ad-
ditional 0.7 and 0.6 BLEU points and adding the recurrent
translation model, we get 0.7% and 0.2% BLEU absolute on
top. The observed improvements are confirmed on the blind
evaluation set tst2014, on which the scores were com-
puted by the workshop organizers. Thus, by applying only
two general and language-independent methods, our state-
of-the-art baseline is improved by 2.4% BLEU on tst2010,
3.5% BLEU on tst2011 and 2.7% BLEU on tst2014.
Altogether compared to last year [21] our translation perfor-
mance was increased by 1.7% BLEU and 1.5% TER absolute
on tst2010.

3.2. German!English

Similar to English!French, the word alignment was trained
with GIZA++ and we applied the phrase-based decoder im-
plemented in Jane. We used all available parallel data for
training the translation model. As backoff language models,
the baseline contains a general-domain LM, an in-domain
LM and a word class LM (wcLM), which are described in
Section 2.3. The hierarchical reordering model (HRM) is
also contained in the baseline. In a preprocessing step the
German source was decompounded [22] and part-of-speech-
based long-range verb reordering rules [23] were applied.
In addition, we tuned our system on two different devel-
opment sets (dev2010 and dev2012). Since the devel-
opment set from 2010 is German translated from English
talks, dev2012 contains manual transcriptions from Ger-
man talks. As a real test set for the manual transcription is
missing, we describe the results (Table 2) for the dev2010-
tuned system in the following. By maximum expected BLEU
training of phrasal and lexical features, the baseline is im-
proved by 1.0% BLEU absolute on tst2010 and 1.6%
BLEU absolute on tst2011. Including the discrimina-
tively trained reordering model yields further gains of 0.4
and 0.2 BLEU points. The recurrent language model gives
us an additional 0.7 and 1.1 BLEU points and adding the
recurrent translation model, we get 0.7% and 0.6% BLEU
absolute on top. Thus, by applying only two general and
language-independent methods, our state-of-the-art baseline
is improved by 2.8% BLEU on tst2010 and 3.5% BLEU
on tst2011. Altogether compared to last year [21] our
translation performance was increased by 1.8% BLEU and
2.2% TER absolute on tst2010. However, we submitted
the system tuned on dev2012, which contains transcribed
and translated German TED-X talks and is therefore more
similar to the evaluation data. The improvements are similar
to the system tuned on dev2010. Unfortunatelly, they do
not carry over to the blind evaluation data tst2014 in the
same magnitude, where we only observe a 0.8% gain over
the baseline.

3.3. Spoken Language Translation (SLT)

RWTH participated in the English!French and
German!English SLT tasks. For both language pairs,
we reintroduced punctuation and case information before
the actual translation similar to [24]. However, we employed
a hierarchical phrase-based system with a maximum of one
nonterminal symbol per rule in place of a phrase-based
system. A punctuation prediction system based on hierar-
chical translation is able to capture long-range dependencies
between words and punctuation marks and is more robust for
unseen word sequences. The model weights are tuned with
standard MERT on 100-best lists. As optimization criterion
we used F2-Score rather than BLEU or WER. More details
can be found in [25].

Since punctuation predicting and recasing were applied
before the actual translation, our translation systems could
be kept completely unchanged and we were able to use our
final systems from the MT track directly.

4. Conclusion
RWTH participated in two MT tracks and two SLT tracks of
the IWSLT 2014 evaluation campaign. The baseline systems
utilize our state-of-the-art phrase-based translation decoder
and we were able to improve them by discriminative phrase
training (+1.8 BLEU) and recurrent neural network models
(+1.9 BLEU).

For the SLT track, the ASR output was enriched with
punctuation and casing information by a hierarchical trans-
lation system tuned on F2-Score.

All presented final systems are used in the EU-Bridge
system combination [26].
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