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ABSTRACT
This paper describes the new release of RASR - the open
source version of the well-proven speech recognition toolkit
developed and used at RWTH Aachen University. The focus
is put on the implementation of the NN module for training
neural network acoustic models. We describe code design,
configuration, and features of the NN module. The key
feature is a high flexibility regarding the network topology,
choice of activation functions, training criteria, and opti-
mization algorithm, as well as a built-in support for efficient
GPU computing. The evaluation of run-time performance
and recognition accuracy is performed exemplary with a deep
neural network as acoustic model in a hybrid NN/HMM sys-
tem. The results show that RASR achieves a state-of-the-art
performance on a real-world large vocabulary task, while
offering a complete pipeline for building and applying large
scale speech recognition systems.

Index Terms— speech recognition, acoustic modeling,
neural networks, GPU, open source, RASR

1. INTRODUCTION

Neural networks have become an essential part of automatic
speech recognition (ASR) technology, in particular with the
advent of deep learning since 2010, see for example [1]. To-
day, neural networks (NN) are not only in the focus of speech
recognition research, but are also used by large companies
such as Google, Microsoft and IBM [2].

At RWTH Aachen University, the speech recognition toolkit
RASR has been developed and actively used for more than
twelve years and been made open source in 2008 [3]. The
idea behind making our speech recognition software publicly
available is to simplify introduction to speech recognition
research and to make scientific results reproducible. Other
well-known open source speech recognition systems are
CMU Sphinx [4], the HTK Toolkit [5], Julius [6], and more
recently Kaldi [7].

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme EU-Bridge (FP7/2007-2013)
under grant agreement N287658. The research leading to these results has
received funding from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 287755 (transLectures). H. Ney
was partially supported by a senior chair award from DIGITEO, a French
research cluster in Ile-de-France.

Previous versions of RASR had no support for neural net-
works. Instead, external tools were required. Most notably,
the popular QuickNet software [8] from ICSI, Berkeley, could
be used, or TNet [9] from Brno University of Technology.
In this paper, we describe RASR’s new neural network mod-
ule NN for acoustic modeling. We compare RASR’s perfor-
mance with QuickNet being an efficient publicly available
neural network software. While it is possible to build ASR
systems by stacking various open source tools for neural net-
work training and speech recognition, RASR covers the com-
plete pipeline of speech processing, ranging from feature ex-
traction over acoustic training to decoding, lattice processing
and scoring. To illustrate the applicability of our software to a
real-life task, we present experimental results on the English
Quaero corpus, a large vocabulary continuous speech recog-
nition (LVCSR) task.

The support of neural networks in an open source toolkit
is challenging for two reasons. First, neural networks are a
highly active research topic. It is not possible to support all
recent advances in the stable version of RASR. We therefore
wrote our neural network code base as generic as possible in
order to allow for rapid integration of new concepts. This
is achieved by decoupling different software parts as much as
possible while maintaining clean interfaces that allow to mod-
ify and extend single aspects of neural networks. Second,
the computation time required for training neural networks
and using them in recognition is critical. Since our goal is
to apply our methods to real-life tasks, the implementation
must be very efficient. In our code, efficiency is achieved by
supporting CPU multithreading and general purpose comput-
ing on GPUs. The GPU implementation makes use of the
CUBLAS library and own CUDA kernels. For CPU compu-
tations, highly optimized matrix libraries following the BLAS
standard can be used, for example Intel MKL or ACML.

RASR is available for download on our website1. The
“RWTH ASR License” allows free usage including redistri-
bution and modification for non-commercial use. The RASR
website also offers comprehensive documentation as well as
tutorials and recipes that help to rapidly develop own systems.
Support is offered in form of a forum on the website.

1http://www-i6.informatik.rwth-aachen.de/rwth-asr



2. IMPLEMENTATION

In this section, we describe the main features of the neural
network implementation in RASR.

2.1. Models

RASR supports feed-forward networks of a very general
topology. The networks can have an arbitrary number of
layers of different sizes and different activation functions.
Each layer may have multiple inputs from other layers. In
general, the network must be representable by a directed
acyclic graph. In contrast, many other neural network imple-
mentations such as QuickNet only allow for a simple linear
structure. The non-linear network structure enables for ex-
ample the use of skip-connections or the joint training of
hierarchical models [10]. Also, the extension of our software
to recurrent networks is facilitated. The type of each layer
can be chosen independently. Currently, RASR provides the
commonly used activation functions sigmoid, tanh, linear
and softmax as well as the recently proposed rectified linear
units (rlu) [11].

Models can be stored either in binary or in XML format.
While the binary format is more efficient, the XML format
makes it easy to debug and analyze models as well as to im-
port models from other neural network software.

2.2. Training

The structure of the neural network training code is simi-
lar to RASR’s implementation of Gaussian mixture estima-
tion. Various frame-level training criteria are implemented
in separate trainer classes, which derive from a common
base class FeedForwardTrainer. The trainer has a
NeuralNetwork, an Estimator, a Statistics ob-
ject, and a Regularizer. Given a mini-batch of training
samples, the trainer computes the sufficient statistics based
on a forward pass and an error backpropagation pass, updates
the statistics, and performs an estimation step. If a GPU is
available, all these operations are performed on GPU with-
out synchronization to the main memory, avoiding expensive
communication.

The available training criteria are cross entropy, squared
error, and binary divergence [12]. Optionally, regulariza-
tion parameters w.r.t. `2- or `1-norm, momentum and learning
rates can be set individually for each layer.

While many neural network tools implement only stochas-
tic gradient descent (SGD), RASR has a clean interface to
the estimator. This simplifies the implementation of alterna-
tive optimization algorithms, which is currently an active re-
search area for neural networks [13, 14]. Currently, the sup-
ported estimators include basic SGD, SGD with momentum,
and a new stochastic second-order algorithm developed in our
group [15]. In addition, batch estimation with gradient de-
scent and Rprop [16] is possible. The estimator automatically
creates a statistics object, which holds the sufficient statistics

required for the optimization algorithm, e.g. the gradient for
SGD.

Almost all training components can be configured indepen-
dently. In particular, we do not only allow “natural pairings”
of training criteria and output-layer, e.g. softmax with cross-
entropy or identity with squared-error as in QuickNet. More
exotic combinations like softmax-outputs with squared-error
are possible as well [17].

A difficulty in the implementation of stochastic optimiza-
tion algorithms is that they require i.i.d. samples, which
is simulated by shuffling the training data. For relatively
small datasets, simply all training samples can be loaded into
main memory and then accessed in random order. For larger
datasets, we use a twofold randomization. We load as many
training utterances as possible in random order into a buffer,
and then shuffle the buffer on frame-level.

Another important aspect of stochastic optimization algo-
rithms is the setting of learning rates. A simple and effec-
tive learning rate schedule is Newbob, as implemented in
QuickNet. Newbob keeps the learning rate constant within
each epoch. RASR also supports a power schedule that
decays with every mini-batch and has been reported to per-
form slightly better than Newbob [18]. Mostly, we use a
modification of Newbob which decays the learning rate less
aggressively than the original Newbob [15].

2.3. Recognition

RASR comes with a dynamic decoder that is based on the
history conditioned lexical tree approach [19]. The generic
code structure of RASR makes it easy to implement a hy-
brid HMM/NN model in the decoder. The decoder uses a
FeatureScorer for computing all required scores. The
NN module offers a neural network feature scorer, which per-
forms a forward pass of the network and converts the state
posteriors to likelihood scores [20]. In case of a softmax out-
put layer, the softmax activation function is not evaluated, be-
cause the normalization term is a constant in the search prob-
lem and can therefore be discarded. The feature scorer sup-
ports batching, i.e., multiple features are processed at once,
which strongly speeds up matrix multiplications.

In tandem systems [21], the neural network is part of the
feature extraction. Therefore, we added an efficient imple-
mentation of neural network forwarding to RASR’s feature
extraction module.

2.4. Feature extraction

RASR already provides a variety of signal analysis and pre-
processing methods. Using RASR’s Flow module, feature
extraction methods can be defined as data flow graphs in
XML format without writing much code in RASR. This
makes it much easier to implement new signal analysis meth-
ods, which is an important part of research on neural networks
for speech. Amongst others, RASR comes with Flow setups
for MFCC, PLP, Gammatone, and MRASTA [22] features.



Table 1. Evaluation of QuickNet and RASR on a DNN with
493 inputs, six hidden layers with 2048 units each, and 4498
outputs on the Quaero task. Word error rates in %.

Learning rate schedule
QuickNet RASR

Training using Dev Test Dev Test

QuickNet 19.6 26.2 19.4 25.9
RASR 19.8 25.7 19.2 25.4

As described in Subsection 2.2, stochastic optimization al-
gorithms require that the features are loaded into a buffer and
shuffled. Typical features for speech applications are obtained
by stacking several consecutive frames in a sliding window.
Buffering the windowed features directly thus increases the
memory requirements proportional to the window size, which
is typically in the order of 10 to 20. Instead, RASR can buffer
only the central frames and construct the windowed features
on-the-fly when generating the mini-batch.

2.5. Implementation details

RASR and its neural network module are entirely written in
C++. Currently, the training can be performed using a single
GPU. All parts of RASR/NN can be used in CPU mode as
well. The RASR/NN module can be linked with highly op-
timized matrix libraries such as ACML or Intel MKL, which
enable CPU multithreading.

With the use of batch optimization algorithms like Rprop,
training can also be distributed across a large number of ma-
chines. It depends on the availability of resources and the
amount of the training data whether stochastic or batch opti-
mization algorithms are preferable.

The neural network code uses a template parameter for
the floating point precision. According to our experience,
stochastic algorithms do not require double precision, be-
cause the stochastic noise dominates rounding errors. Batch
algorithms are much more sensitive to rounding error and
might require double precision, e.g. for the statistics object.

The training of neural networks is designed such that a sin-
gle run of the RASR binary performs one epoch of training.
This has the advantage of greater flexibility of the training
procedure. Not only one can monitor the performance by
evaluating the intermediate model on some held-out set, store
the intermediate results or calculate various statistics of the
model, but also control network parameters: adjusting learn-
ing rate, varying number of layers, etc. This allows e.g. for an
easy implementation of different flavors of pretraining [23].

3. EXPERIMENTS

In this section, we present experimental results that demon-
strate the usefulness of RASR’s neural network implementa-
tion on real-world tasks. We compare RASR/NN with Quick-
Net in order to verify the implementation.

Table 2. Effect of adding skip-connections to a neural net-
work with one hidden layer of size 2048 units, and 4498 out-
puts. Frame error rates and word error rates in %.

FER [%] WER [%]

Model topology Train Dev Test

MLP 57.1 24.2 31.7
MLP + skip connections 54.7 23.5 30.8

3.1. Experimental setup

We performed experiments on the English Quaero corpus, a
broadcast conversations recognition task. Our basic setup is
the same as for our evaluation system for the Quaero project
[24]. All models are trained on a 50-hour subset of the En-
glish Quaero training data, which allows for profiling training
even without the use of a GPU. The development and test cor-
pora (quaero-eval10 and quaero-eval11) consist of 3.7 and 3.3
hours of speech respectively.

For comparison, we also trained a conventional GMM-
HMM system with VTLN-transformed MFCC features, ac-
cording to the maximum likelihood criterion. 4498 context
dependent states are modeled. In recognition, we use a lex-
icon with 150k words and a 4-gram language model. The
GMM achieves 24.3% word error rate (WER) on the devel-
opment data and 31.2% WER on the test data.

All neural networks have been trained according to the
cross-entropy criterion with the context-dependent states as
outputs. The training data corresponds to 17M frames, of
which ten percent have been held out for cross-validation.
The input to the neural networks is a 493-dimensional vector
of VTLN-warped MFCC features and derivatives of first and
second order which are computed in a sliding window of size
17. We evaluate two types of neural networks: a multi-layer
perceptron (MLP) with one hidden layer of size 2048, and
a deep neural network (DNN) with six hidden layers of the
same size. DNN training has been initialized with a super-
vised layerwise pre-training as described in [23]. The SGD
mini-batch size was set to 512. As mentioned in Subsec-
tion 2.2, RASR uses a modification of the QuickNet learning
rate schedule Newbob. For a fair comparison we ran RASR
and QuickNet with both learning rate configurations.

We aimed at keeping the QuickNet and RASR setups com-
parable at all levels. We used exactly the same training data
and feature extraction for both implementations. The float-
ing point precision of RASR has been set to single precision,
which is also the hard-coded QuickNet setting. All recogni-
tions were performed with RASR using the same search pa-
rameters.

3.2. Results

Table 1 shows the word error rates of RASR and QuickNet in
experiments with DNNs. Although both implementations use
the same algorithms, it is important to compare their perfor-



Table 3. Runtime analysis of RASR and QuickNet on neural networks with one and six hidden layers of size 2048, 493 inputs,
and 4498 outputs. The training is performed on 50 hours of speech (approx. 15M frames). Runtime was measured on an Nvidia
Tesla K20c (GPU) and a 12-core AMD processor (CPU).

Model Hardware Implementation Time per mini-batch [ms] Wallclock time [min]
Forwarding Backpropagation + SGD update Training epoch

1x2048
GPU QuickNet 37.0 49.3 36.0

RASR 10.1 21.3 17.1

CPU QuickNet 193.1 1208.6 616.1
RASR 120.2 236.0 187.0

6x2048
GPU QuickNet 49.0 83.8 58.2

RASR 23.8 46.3 37.1

CPU QuickNet 595.3 3499.5 1773.3
RASR 330.4 715.4 549.3

mance, because the numerical stability of the code and imple-
mentation details impact the results.

The results in Table 1 confirm that the RASR learning rates
are slightly better than the default Newbob learning rates in
QuickNet. The Newbob learning rates performed worse on
the development and test data, no matter whether we used
RASR or QuickNet for training.

In three out of four experiments RASR achieved better re-
sults. The differences may not be significant, but we can con-
clude that the results obtained by RASR are competitive.

RASR allows to train models with a more general archi-
tecture than conventional N -layer networks. As a proof-of-
concept, we trained an MLP and an MLP with the input layer
being additionally connected to the output layer. As can be
seen in Table 2, the skip-connections improve the recognition
performance. Note however, that this model has more param-
eters and better results can also be achieved by increasing the
number of layers.

3.3. Runtime analysis

In order to be able to train large models for real-world tasks
and to tune systems, an efficient implementation is required.
We performed a detailed runtime analysis of RASR and
QuickNet. We measured the average computation time per
mini-batch and determined the individual contributions of the
forward pass and the backpropagation pass including the SGD
parameter update. In addition, we measured the wall-clock
time per epoch. The runtime analysis has been performed
for the single-layer (MLP) and the six-layer networks (DNN)
on an Nvidia Tesla K20c and a twelve-core AMD Opteron
(2.3GHz). The results are summarized in Table 3.

Comparing the computation time per mini-batch in GPU
mode, it can be seen that RASR is faster than QuickNet by a
factor of 2.3 for the shallow network. The time measurement
is consistent with the observed wall-clock time per epoch.
The difference between both implementations is less pro-
nounced for the deep network, but RASR is still 1.8 times
faster than QuickNet.

A closer analysis revealed that QuickNet performs more
data transfer than RASR. For example, the activations of the
output layer are transferred to the main memory in order to
compute frame error statistics on the CPU. Other factors may
as well contribute to the slower training with QuickNet.

Comparing RASR’s GPU and CPU implementations, the
training on GPU is faster by a factor of 11 for the MLP and
15 for the DNN. The gain of using a GPU may be smaller on
faster CPUs. Nevertheless, there is a clear advantage of using
GPUs for training DNNs. The speed-up of RASR in compar-
ison to QuickNet in CPU mode is even larger than in GPU
mode.

4. CONCLUSION

We presented the new release of RASR with the NN module
for training and evaluating neural networks for ASR. The
presented open source software allows for a flexible config-
uration of network topology, choice of activation functions,
training criteria and optimization algorithm. The compu-
tational efficiency is achieved by a transparent support of
GPUs. The experimental evaluation on a real-world LVCSR
task confirms that RASR achieves competitive recognition
accuracy, while requiring far less computational time than
QuickNet. With the NN module, RASR covers the complete
ASR pipeline ranging from feature extraction over training
to recognition, for both hybrid and tandem systems. Our
future releases will include most recent improvements such
as recurrent neural networks [25], convolutional layers [26],
as well as sequence discriminative training [27].

5. ACKNOWLEDGMENT

We thank Christian Plahl for initial work on the neural net-
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