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ABSTRACT
Deep neural networks are typically optimized with stochastic gradi-
ent descent (SGD). In this work, we propose a novel second-order
stochastic optimization algorithm. The algorithm is based on an-
alytic results showing that a non-zero mean of features is harmful
for the optimization. We prove convergence of our algorithm in a
convex setting. In our experiments we show that our proposed algo-
rithm converges faster than SGD. Further, in contrast to earlier work,
our algorithm allows for training models with a factorized structure
from scratch. We found this structure to be very useful not only be-
cause it accelerates training and decoding, but also because it is a
very effective means against overfitting. Combining our proposed
optimization algorithm with this model structure, model size can be
reduced by a factor of eight and still improvements in recognition
error rate are obtained. Additional gains are obtained by improving
the Newbob learning rate strategy.

Index Terms— deep learning, optimization, speech recognition,
LVCSR

1. INTRODUCTION

Deep neural networks (DNNs) have become an essential part of
state-of-the-art automatic speech recognition systems. In partic-
ular, hybrid architectures where a DNN models the tied context-
dependent states of an HMM speech recognizer have been shown to
work very well [1, 2, 3, 4].

DNN training is a very difficult and highly non-convex optimiza-
tion problem. The most widely used optimization algorithm used
for DNN training is stochastic gradient descent (SGD). Typically,
the stochastic gradient is computed on mini-batches. SGD scales
well to large databases due to its stochastic nature. Further, the com-
putation within one mini-batch can be parallelized well on GPUs.
Nevertheless, improving the optimization is of great interest for two
reasons: First, even with the use of GPUs, training time for DNNs
is very high and may be reduced with improved optimization algo-
rithms. Second, in regions with pathological curvature, SGD con-
verges very slowly or may even fail to improve the training objective
further. Therefore, better error rates may be achieved by improving
the optimization. Both of these issues are especially important for
large-scale learning tasks as speech recognition.

An alternative to SGD is the use of batch algorithms, i.e., algo-
rithms where the gradient is computed on the full dataset, for exam-
ple LBFGS [5, 6], Rprop [7], or the Hessian-Free algorithm [8, 9].
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These algorithms have in common that they make efficient use of
second-order information. Further, they can be parallelized well by
distributing the gradient computation across a large number of de-
vices. However, on very large datasets, the computational costs of
batch algorithms may become prohibitive. Therefore it is interesting
to incorporate second-order techniques into stochastic algorithms as
well.

Many approaches to stochastic second-order optimization are
based on an approximation to the Hessian matrix on the mini-batch,
e.g. a diagonal approximation [10] or a quasi-Newton approximation
[11, 12]. Most of these approaches have not been very successful,
because the stochastic second-order information is very noisy and
the algorithms have additional computational costs. In this work,
we develop mean-normalized SGD (MN-SGD), a new stochastic
second-order algorithm which uses analytic results [13, 14] about
the structure of the objective function which is optimized in training.
We prove convergence of our algorithm in a convex setting.

It has often been observed that improved optimization algorithms
may cause overfitting on machine learning tasks. In this work, we in-
vestigate a recently proposed model structure [15, 16] that allows for
reducing model size and thus improves generalization. Furthermore,
these smaller models reduce computational costs in both training and
decoding.

Our experiments on an English broadcast conversations recogni-
tion task show that our proposed algorithm converges much faster
than SGD. With our algorithm, model size can be reduced by a factor
of eight and still improvements in recognition accuracy are obtained.

2. MEAN-NORMALIZED STOCHASTIC GRADIENT

In this section, we describe our proposed optimization algorithm,
prove its convergence, and describe methods to improve generaliza-
tion performance.

2.1. General setting and notation

Let X ⊂ RD denote the observation space, S = {1, . . . , S} the
classes, and {(x1, s1), . . . , (xT , sT )} ⊂ X×S the training sample.
Let

qΛ : RD → RS , x 7→ qΛ(x) (1)
denote the discriminant function that is defined by a neural network
with parameters Λ. The aim of neural network training is the mini-
mization of an objective function

F : RN → R, Λ 7→
T∑

t=1

`(qΛ(xt), st) + α r(Λ) , (2)

where `(qΛ(xt), st) is the loss function, N the number of free pa-
rameters, and r is an optional regularization term with regulariza-
tion constant α ≥ 0. The most widely used training criterion for



neural networks is the cross-entropy criterion, i.e., `(q(x), s) =
−log q(x)[s]. The update rule of SGD is

Λt+1 = Λt − ηt∇F (Λt,Bt) , (3)

where ηt > 0 is the learning rate and∇F (Λt,Bt) is the gradient of
F on a mini-batch Bt. The stochastic second-order update rule is

Λt+1 = Λt − ηtBt∇F (Λt,Bt) , (4)

where Bt is chosen to approximate the inverse Hessian of F .

2.2. Derivation of the algorithm

Although computing the exact Hessian matrix is prohibitive in prac-
tice, important conclusions can be drawn from a theoretical analysis.
A well-known result is that the eigenvalues of the Hessian matrix de-
pend on the mean and the variance of the input features, see [13] for
squared error loss and [14] for the cross-entropy loss and weaker as-
sumptions . It can be concluded, that convergence speed is improved
when mean and variance of the input features are normalized. For
neural networks, only the input to the lowest layer can be normalized
directly, because the input to the other layers changes dynamically
during training. The idea of our proposed algorithm is to perform a
mean normalization step on model side instead of explicitly normal-
izing the features. Running averages of the activations are used for
the required mean statistics.

For terms of simplicity, we consider only the parameters of one
layer of the network in the following. Let W ∈ RD1×D2 denote the
weight matrix and a ∈ RD2 the bias vector. The objective function
for a single training sample (x, s) can be written as

F : R(D1+1)×D2 7→ R, (W,a) 7→ G(WT z + a) , (5)

where z is the input to the layer and G is the composition of the
loss `(·, s) and the remaining higher layers and non-linearities of the
network. The objective function of the mean-normalized feature is

F̃ : R(D1+1)×D2 7→ R, (W,a) 7→ G(WT (z + b) + a) , (6)

for a vector b ∈ RD1 . It is possible to map between the parameters
corresponding to the original and transformed features. With

φ(W,a) := (W,a−WT b) , (7)

we have

F (W,a) = F̃ (φ(W,a)) and (8)

F̃ (W,a) = F (φ−1(W,a)) . (9)

Instead of explicitly normalizing the features and optimizing F̃ ,
the parameters can be mapped to the normalized parameter space
with φ, updated with the SGD rule (3), and mapped back to the orig-
inal parameter space with φ−1:

(Ŵ , â) := φ−1
(
φ(W,a)− η · ∇F̃

(
φ(W,a)

))
. (10)

This modified update rule requires the gradient of F̃ , which can be
calculated with the chain rule:

∇W F̃ (W,a) = ∇WF
(
φ−1(W,a)

)
+b · ∇T

a F
(
φ−1(W,a)

)
, (11)

∇aF̃ (W,a) = ∇aF
(
φ−1(W,a)

)
. (12)

Inserting into (10), finally leads to the update rule of our proposed
mean-normalized SGD:

Ŵ = W − η ·
(
∇WF (W,a) + b · ∇aF (W,a)T

)
, (13)

â = a− η ·
(
∇WF (W,a)T · b

+(1 + bT b)∇aF (W,a)
)
. (14)

Note that this update rule can be written in the form of a gen-
eral second-order update (4). Writing the parameters as Λ =
(vec(W ), vec(a)), and omitting the indices t, the matrix B in (4) is
of the form

B =

(
I CT

C (1 + bT b)I

)
, (15)

where

C :=

 b1 . . . bD1

. . .
b1 . . . bD1

 ∈ RD2×D1·D2 . (16)

The mean activations of neural networks can be calculated by run-
ning averages:

bt = αE(y|Bt) + (1− α)bt−1. (17)

Here, y is the activation of the layer, E(y|Bt) is the activation mean
on mini-batch Bt, and 0 < α < 1 is a smoothing factor.

Analogous formulas can be derived for an implicit variance nor-
malization . However, in initial experiments, implicit variance nor-
malization did not yield improvements. Therefore, we have not con-
sidered this approach further.

2.3. Convergence proof

For the MN-SGD convergence proof, we need to restrict ourselves to
the strictly convex case, e.g. a single layer network trained according
to the `2-regularized cross-entropy criterion. Note that this assump-
tion is required for almost all results on convergence guarantees. Our
convergence proof is an application of a theorem by Sunehag et al.
[17, Theorem 3.2], which follows from a very general result by Rob-
bins and Siegmund [18] that makes use of supermartingale theory.

Sunehag’s theorem states that a stochastic second-order algorithm
converges almost surely if the matrix B in (4) is symmetric and its
eigenvalues are bounded below and above by positive numbers m
and M . Further, commonly used assumptions on the learning rates
and mild assumptions on the objective function are required.

The matrix B in (15) is symmetric. Its block-structure allows for
the computation of the extremal eigenvalues:

λmax, min = 1 +
1

2
‖b‖2 ± ‖b‖

√
1 +

1

4
‖b‖2 . (18)

It can be shown that the eigenvalues are bounded when b is bounded,
which proves almost sure convergence of MN-SGD.

2.4. Learning rate strategies

A critical aspect for the performance of DNNs is the choice of a
learning rate strategy, see e.g. [19]. In our group, we mostly used
the popular Newbob learning rate strategy as it is implemented in the
Quicknet software [20], i.e., the learning rate is kept fixed as long
as the frame classification error (FCE) on the cross-validation (CV)
set improves by at least 0.5%. In all subsequent epochs, the learn-
ing rate is halved. Training is terminated when the improvement is
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Fig. 1. Training frame classification error of SGD and MN-SGD for full-sized models (left) and models with bottlenecks of size 256 (right).
Training has been initialized with pre-trained models. Note that already the pre-training results of SGD and MN-SGD differ strongly.

below 0.1%. This learning rate strategy works reasonably well and
generalizes to new datasets without further tuning of hyperparame-
ters. Controlling the learning rate by the CV performance effectively
avoids overfitting. However, we noted that Newbob decays the learn-
ing rate too quickly. A better strategy is to reduce the learning rate
only when there is an additional epoch without sufficient improve-
ment on CV. We refer to this learning rate strategy as Newbob+/CV.

For our purpose, the Newbob(+)/CV strategies are not well suited,
because they prevent aggressive optimization on the training data.
Therefore, the effect of the optimization algorithm is weakened. In-
stead, we use Newbob+, but replace the validation set by a repre-
sentative subset of the training data. Overfitting is avoided by early
stopping, i.e., we use the model that performs best on the develop-
ment data. We refer to this learning rate strategy as Newbob+/Train.

2.5. Improving generalization performance

A general problem of more efficient optimization algorithms on ma-
chine learning tasks is that higher training accuracy can cause over-
fitting. A standard mean against overfitting is the use of regulariza-
tion, e.g. `2-regularization. However, in our experiments we could
not gain improvements in recognition word error rate by using `2-
regularization and therefore were searching for an alternative.

Overfitting can also be avoided by restricting the model size. This
has the additional benefit of accelerating both training and recogni-
tion. The DNN size can be reduced by decreasing the number of
layers or hidden nodes per layer. But typically, the best results are
achieved with larger models in combination with early stopping or
Newbob. Recently, a more sophisticated approach for reducing the
size of DNNs has been proposed. Sainath et al. [15] factored the
weight matrices into the product of two smaller matrices. This is
equivalent with inserting a linear bottleneck between two layers of
the network. Sainath et al. found this technique to be effective for
the output layer, but not for the hidden layers. They conjectured that
these do not have an underlying structure that allows for a low-rank
factorization. Xue et al. [16] confirmed that linear bottlenecks in
all layers degrade performance when the DNN is trained with SGD
from scratch. But they could achieve a factorization of the hidden
layers by first training a full-sized model, then factorizing the weight
matrices by means of singular value decomposition (SVD), and fi-
nally retraining the model. Using this approach, they could compress
models by 80% without loss in accuracy.

Sainath et al.’s approach reduces the computational costs of DNNs

in training and recognition but is limited to the output layer only. On
the other hand, all layers can be compressed using Xue et al.’s ap-
proach, which accelerates recognition, but makes training even more
expensive. The value of the linear bottleneck structure as a regular-
ization method has not been identified in [15, 16]. Our experiments
show that using MN-SGD allows for a factorization of all layers
when training from scratch. We even benefit from the factorization
as a regularization method.

3. EXPERIMENTAL RESULTS

We validated our proposed approach on the English Quaero corpus,
a broadcast conversations recognition task. Our baseline system is
a simplified version of our evaluation system [21], which performed
best in the Quaero evaluations 2010, 2011, and 2012. All models are
trained on a 50-hour subset of the training data. The development
and test corpora (quaero-eval10 and quaero-eval11) consist of 3.7
and 3.3 hours of speech respectively.

Our GMM-HMM baseline uses MFCC features with vocal tract
length normalization and is trained according to the maximum like-
lihood criterion. The GMM has a pooled, diagonal covariance matrix
and 750k densities. 4500 context dependent states are modeled. The
recognition lexicon consists of 150k words. The language model is a
smoothed 4-gram, trained on roughly four billion words. The GMM
achieves 24.3% word error rate (WER) on the development data and
31.2% WER on the test data.

For our experiments with neural networks, we used the hybrid ap-
proach [22]. All neural networks are trained according to the cross-
entropy criterion with the 4500 context-dependent states as outputs.
Ten percent of the training data have been removed for cross-
validation. The input to the neural networks is a 493-dimensional
vector which is built up from the 16-dimensional MFCC vectors in a
context window of size 17 and all first and second derivatives which
can be computed within this window. The global mean and vari-
ance of the input features are normalized before training. The DNN
baseline has six hidden layers with sigmoid activation function and
2048 nodes, and a softmax output layer. Training is initialized with
a supervised layerwise pre-training as described in [2]. Pre-training
has been performed either with SGD or MN-SGD. The mini-batch
size for SGD and MN-SGD has been set to 512. All experiments are
performed with our open source DNN tool which is part of RASR
[23]. The complete training is performed on a GPU. The training



Table 1. Experimental results of SGD and MN-SGD. The first two columns list the size of the bottleneck, the number of parameters of the
model, and the reduction in comparison to the full model. The third column specifies whether Newbob+/CV or Newbob+/Train has been
used. Columns four to six show the results of SGD: the epoch that has been used in recognition, the frame classification error on the training
data at this epoch, and the WER (%) on the development and test data. Analogously, columns seven to eleven show the results of MN-SGD.

SGD MN-SGD
Bottleneck Params Newbob Ep. FCE train WER dev WER test Ep. FCE train WER dev WER test

- 31.2M CV 10 51.5 19.2 25.4 7 51.9 19.5 25.7
- 31.2M Train 20 41.1 18.7 24.7 18 38.7 19.0 25.5

512 14.8M (52.3%) Train 21 49.8 18.9 25.0 9 51.3 18.7 24.7
256 7.9M (74.5%) Train 19 54.9 19.7 25.7 21 38.7 18.4 24.2
128 4.9M (85.6%) Train 13 59.9 21.5 27.9 18 47.3 18.6 24.2
64 2.8M (91.2%) Train 16 61.4 22.4 28.8 15 53.5 19.3 25.3

time per epoch for a full model is roughly one hour.
Our experimental results are summarized in Table 1. The DNN

baseline trained with Newbob+/CV achieves 19.2% on the develop-
ment data, which is a relative improvement of 21.0% in compari-
son to the GMM baseline. For these experiments, we applied the
Newbob termination criterion (see Subsection 2.4) and used the fi-
nal model for recognition. Training required ten epochs.

Our results show that Newbob+/CV decreases the learning rate too
quickly. The Newbob+/Train learning rate strategy not only shows
clearer effects on the training accuracy than Newbob+/CV, but also
improves recognition performance notably. We also trained a model
with SGD and the conventional Newbob/CV learning rate strategy
for comparison. This model only achieves 19.8% WER on the de-
velopment data and 25.7% WER on the test data. We did not ob-
serve gains in the CV frame error by using Newbob+/Train instead
of Newbob+/CV. Hence, the improvements must be due to a mis-
match between frame and word error rate. A possible explanation
might be that the frame error of easy classes reaches its optimum at
another point than classes which are more discriminative in recogni-
tion. In our opinion, this observation requires further analysis.

As can be seen in Figure 1 (left), MN-SGD converges faster than
SGD. In addition, Newbob/CV+ terminates the MN-SGD training
already after seven epochs instead of the ten epochs of SGD. But
since we use very large models, which have more than twice as many
parameters as the number of training samples, there is nothing to
gain in terms of word error rate. The training error can be reduced
arbitrarily by continuing training. Note that the best error rates that
we achieved with SGD were obtained with these large networks.

In order to reduce overfitting, we investigated the use of `2-
regularization. But although we could obtain improvements in the
CV frame classification error by up to 4.0% absolute, we could
not obtain any improvement in word error rate on the development
data. This again shows that the frame classification error is not a
good measure for the quality of a neural network in a hybrid speech
recognition system.

In a second step, we considered models of smaller size with linear
bottlenecks, as described in Subsection 2.5. We added a linear bot-
tleneck between all hidden-to-hidden connections and the hidden-to-
output connection. As already observed by [15, 16], the performance
of such networks degrades when they are trained with SGD, see Ta-
ble 1. Word error rate already slightly degrades with a reduction of
the parameters by a factor of two. Reducing the number of param-

eters further, increases the word error rate strongly. This behavior
is the reason why Xue et al. [16] first trained a full-sized network,
then applied SVD to the weight matrices, and finally retrained the
reduced model.

Using MN-SGD, training behaves completely differently. Up to a
certain point, the error rate decreases with the model size due to less
overfitting. The best result of 18.4% on the development data and
24.2% WER on the test data is obtained with a model that is roughly
four times smaller than the full model. We still achieve improve-
ments on the development and test data with a parameter reduction
of 85.6%.

4. DISCUSSION

We proposed MN-SGD, a new stochastic second-order optimization
algorithm. We have proven convergence of MN-SGD in a convex
setting. In our experiments, we showed that MN-SGD converges
faster than SGD, thus training time is reduced.

An interesting related approach is [24], where dynamically trans-
formed activation functions are proposed. The idea is to achieve zero
mean activations too. But in contrast to our work, this method is not
applicable to arbitrary network structures. While our proposed ap-
proach is a general optimization algorithm which can be applied to
any neural network, [24] requires additional skip-connections.

Another contribution of our work is an improvement to the widely
used Newbob strategy. We observed that Newbob decays the learn-
ing rate too quickly. Furthermore, it is based on the frame classifica-
tion error which does not correlate well with the word error rate.

We found that a recently proposed model factorization [15] is a
very effective means against overfitting. In addition, the reduced size
of the factorized models accelerates training as well as recognition.
Using SGD, this model factorization can only be applied to the out-
put layer. The training method of [16] allows for a factorization of
all layers, but requires to train an unfactorized model first. With our
proposed algorithm, we trained models where all layers are factor-
ized from scratch. The number of parameters of the factorized model
can be reduced by more than eighty percent and still improvements
in word error rate are obtained.

In future work, we want to apply MN-SGD to bottleneck networks
used for GMM tandem systems. A comparison of MN-SGD with a
full second-order algorithm as the Hessian-Free algorithm would be
of interest too.
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