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ABSTRACT

We show how a new unsupervised approach to learning
musical relationships can exploit Bayesian MAP induction
of stochastic transduction grammars to overcome the chal-
lenges of learning complex relationships between multiple
rhythmic parts that previously lay outside the scope of gen-
eral computational approaches to music structure learning.
A good illustrative genre is flamenco, which employs not
only regular but also irregular hypermetrical structures that
rapidly switch between 3/4 and 6/8 mediocompas blocks.
Moreover, typical flamenco idioms employ heavy synco-
pation and sudden, misleading off-beat accents and pat-
terns, while often elliding the downbeat accents that hu-
mans as well as existing meter-finding algorithms rely on,
thus creating a high degree of listener “surprise” that makes
not only the structural relations, but even the metrical struc-
ture itself, ellusive to learn. Flamenco musicians rely on
both complex regular hypermetrical knowledge as well as
irregular real-time clues to recognize when to switch meters
and patterns. Our new approach envisions this as an inte-
grated problem of learning a bilingual transduction, i.e., a
structural relation between two languages—where there are
different musical languages of, say, flamenco percussion
versus zapateado footwork or palmas hand clapping. We
apply minimum description length criteria to induce trans-
duction grammars that simultaneously learn (1) the multi-
ple metrical structures, (2) the hypermetrical structure that
stochastically governs meter switching, and (3) the prob-
abilistic transduction relationship between patterns of dif-
ferent rhythmic languages that enables musicians to predict
when to switch meters and how to select patterns depend-
ing on what fellow musicians are generating.

1. INTRODUCTION

Little work has been done on automatic algorithms for
learning across multiple parts in rhythmically complex mu-
sic genres such as flamenco, despite a respectable history of
work on automatic meter finding utilizing a wide range of
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underlying modeling paradigms. Repetition of patterns is a
central feature in many automatic meter finding algorithms
such as that of Steedman [23]. Early approaches were rule-
based (e.g., Longuet-Higgins and Steedman [16]), while
others employed neural nets (e.g., Desain and Honing [6])
or preference rules (e.g., Povel and Essens [19], Temper-
ley and Sleator [28]). More recent approaches are based
on probabilistic modeling, such as the generative models
of Cemgil ef al. [4]), Raphael [20], and Temperley [27].

Generally, however, these approaches are based on rela-
tively simplistic assumptions about straightforward duple,
triple, or 4/4 meters accompanied by the regular occurrence
of strong accents on or near the downbeat. These assump-
tions are widely understood to apply primarily to Western
music conventions rather than worldwide music genres that
can be rhythmically much more complex. Flamenco con-
ventions, for example, often defy for example what Ler-
dahl and Jackendoff [14] termed the “Strong Beat Early”
rule—omitting the downbeat accent is a typical idiom, and
in fact the strong beat is often understood in flamenco to be
late. Moreover, flamenco rhythms employ continual meter
switching in both regular and irregular ways, with a com-
plex hypermetrical language governing the switching, and
make frequent use of polyrhythm in addition.

Even less work has been done to date on computational
approaches to analysis of flamenco. Models such as those
of Diaz-Banez et al. [7], Gomez and Bonada [12], Guas-
tavino et al. [11], Mora et al. [17], or Thul and Toussaint
[29] represent various intriguing attacks on specific aspects
of flamenco, but do not attempt to actually induce the mu-
sical structures.

To attack more complex rhythmic forms such as these,
we propose an approach based on unsupervised induction
of stochastic transduction grammars. On one hand, this fol-
lows the generative modeling paradigm of GTTM [14] and
Steedman [24] or [25] in which various aspects of music
can each be modeled as languages that can be generated
by formal grammars. On the other hand, to facilitate auto-
matic learning and scaling up of the models, we formulate
the task in terms of stochastic grammars that describe prob-
abilistic models of musical structure.

The majority of previous work on stochastic grammat-
ical models for music employs flat Markov models and/or
hidden Markov models (HMMs). For example, both the
Continuator model of Pachet [18] and the Factor Oracle
models of Assayag et al. [2] use Markov models to learn
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music improvisation conventions-an approach further ex-
plored by Francois ef al. [8] and [9]. A grammar induction
approach for learning jazz grammars under Markovian as-
sumptions is proposed by Gillick et al. [10]. Relatively
little has been done on musical structure modeling using
stochastic context-free grammars [13]. Related work on
unsupervised learning of CCMs (a variant of SCFGs) for
musical grammars includes that of Swanson et al. [26], or
the Data Oriented Parsing approach of Bod [3].

Stochastic grammars are excellent for describing indi-
vidual aspects of music. Much of music, however, is about
the loosely coupled relationships between multiple strands
of different kinds of sequences taking place in parallel.

Our new approach differs from previous stochastic gram-
matical models of music in that we (1) shift to bilingual
stochastic transduction grammars instead of conventional
monolingual stochastic grammars, allowing us to model
learning structural relations between different musical lan-
guages of separate percussive flamenco parts, and (2) ap-
ply a new grammar induction strategy that searches for the
Bayesian MAP (maximum a posteriori) model encompass-
ing metrical relations, hypermetrical relations, and proba-
bilistic transduction relations in a single integrated process.

2. STOCHASTIC TRANSDUCTION GRAMMARS

In classic formal language theory, a transduction is a
relation between two languages, which is exactly what we
wish to induce. A transduction grammar or translation
grammar (TG) is a bilingual grammar of transductions,
and describes structured relations between two languages
[1],[15]. (Anequivalent term “synchronous grammar” used
only in computational linguistics is not as long established
or widely understood throughout computer science.)

Thus stochastic transduction grammars are probabilis-
tic bilingual grammars of transductions, and describe struc-
tured relations between two languages probabilistically—
which means that stochastic TGs do not suffer from the
overly rigid constraints of non-stochastic transduction mod-
els, and can be automatically learned [31]. In a stochas-
tic transduction grammar, a probability distribution is im-
posed over the space of possible derivations. This is typ-
ically done by associating a conditional probability with
each rule, representing the probability that any nonterminal
symbol matching the left-hand-side of the rule generates
children matching the right-hand-side of the rule. Tech-
niques have been developed for numerous tasks utilizing
stochastic transduction grammars including aligning bilin-
gual corpora, unsupervised segmentation and annotation of
bilingual corpora, automatic induction of bilingual corre-
spondences, grammar induction for stochastic TGs, and so
on [32].

In this paper we will make use of stochastic monotonic
transduction grammars, which in terms of generative ca-
pacity sit in the hierarchy of transduction grammars be-
tween stochastic finite-state transducers and linear inver-
sion transduction grammars, as detailed in [32].

A monotonic transduction grammar or MTG (equiva-
lent to the “simple syntax-directed transduction grammar”
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or “simple SDTG” of Aho and Ullman) in normal form is
atuple (N, %, A} S, R) where N is a finite nonempty set
of nonterminal symbols, ¥ is a finite nonempty set of input
languge symbols, A is a finite nonempty set of output lan-
guage symbols, S € N is the designated start symbol, and
R is a finite nonempty set of syntax-directed transduction
rules on the forms:

S—=A A—=p, A—elf

where A € N, ¢ € NNN*, and e and f are terminal
symbols representing musical event segments as follows.

Strings in both the languages represent sequences of sym-
bolic musical event tokens. A “sentence” is a full musical
passage for a single instrumental part, whereas a “bisen-
tence” is a matched musical passage with both instrumental
parts. For convenience of musical interpretation, instead of
writing musical sequences using linguistic string notation,
we shall use conventional music staff notation for musical
event segments e and f, as in Figure 1. Just as we consider
the monolingual terminal symbols e and f to represent mu-
sical event segments, we consider the bilingual e/ f nota-
tion to denote a biterminal symbol representing a paral-
lel pair of musical event segments from different musical
instruments. Technically, e/f € (£* x A*) — (¢/e), in
which we exclude the degenerate case of pairing a zero-
length empty segment ¢ with another zero-length empty
string € to avoid unnecessary complications arising from
infinite recursion.

3. TRANSDUCTION GRAMMAR INDUCTION

In this section we describe our new model for unsuper-
vised induction of stochastic transduction grammars. For
concrete examples of the abstract model, see Section 4.

Minimizing description length We begin with the over-
all Bayesian model whose posterior we wish to maximize.
We seek the maximum a posteriori (MAP) model given the
data; that is, we attempt to optimize the posterior probabil-
ity following Bayes’ rule

P(@)P(D|®)

P (D)
where @ is the model and D is the training data. The prior
probability of the data is constant during search, which gives
us the following search problem:

P(®| D)=

argmaxP (®) P(D | @)
P

In our case, the probability of the data given the model
can be determined through parsing since it is a grammar.
The prior of the model is, however, somewhat more com-
plicated because it must incorporate the effect of both the
structure and the parameters of the model.

P(®)=P(®g) P(®s | 2q)P(bs | Ps, D)

®(; is a global prior over possible model formalisms,
which we set to be the space of possible monotonic trans-
duction grammars, P(®g | ®¢) is a prior on the model
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structure given the model formalism, and P(0s | ®g, P¢)
is a prior over the model parameters given the formalism
and the structure. We approximate the prior over the model
structure using the description length of the model:

—10g2 (P(‘PS | (I)G)) x DL (¢’S)

The description length of a model is calculated by summing
the length of all the rules, where each unique (monolin-
gual) terminal segment is efficiently given a unique Huff-
man encoding. This avoids redundant double-counting of
terminal segments that appear in more than one rule. The
length of a symbol is proportional to —log, (ﬁ) where
M = 24+ N + ¥ + A is the total number of symbols
(N is the number of nonterminals, X is the size of the Ly
vocabulary and A is the size of the L; vocabulary). Thus,
for example, reducing the number of distinct nonterminals
in a grammar reduces its description length.

We set the prior over the model parameters to be a uni-
form Dirichlet distribution over right-hand sides given left-
hand sides:

N-1 1 Rp;—1
P(0g | Pg,Pq) = 0% (5
(02 | @5, ®c) E}B(am%m%i_l) E[O 6]

where N is the number of nonterminals, R,,, is the set of
rules where n; is the left-hand side, and 63’ is a function
that gives the rule probabilities for rule where the left-hand
side is n;. Fleshing out the search problem, we have:

argmax P (®g) P(®s | @q)P(0s | ©s5,26)P(D | ¢, Ps,0)
g, Ps5,00

Recall that are restricting ®¢ to monotonic transduction
grammars. We further divide the search into two phases:
a top-down rule segmentation phase, which focuses on the
structural induction to optimize P(®s | ®¢) and P(D |
b, Py, 04 ), and a parameter tuning phase, which focuses
on P(@@ | @S, q)g) and P(D | (I)G, (133, 9@)

Initializing model structure The induction procedure starts
with a transduction grammar that memorizes the training
data as well as possible, and generalizes from there. The
transduction grammar that best fits the training data is the
one where the start symbol rewrites to the full sentence
pairs that it has to generate. It is also possible to add any
number of nonterminal symbols in the layer between the
start symbol and the bisentences without altering the prob-
ability of the training data. We take initial advantage of this
by allowing for one intermediate symbol so that the start
symbol conforms to the normal form and always rewrites
to precisely one nonterminal symbol.

Our initial model thus consists of the rule S — A plus
numerous rules of the form A — eq. 1/ fo..v where S is
the start symbol, A is the nonterminal, 7" is the length of the
output sentence, and V' is the length of the input sentence.

Generalizing model structure In order to generalize the
initial monotonic transduction grammar we need to identify
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parts of the existing biterminals that could be validly used
in isolation, and allow them to combine with other seg-
ments. This is the very feature that allows a finite transduc-
tion grammar to generate an infinite set of sentence pairs;
when we do this, we move some of the probability mass
which was concentrated in the training data out to other data
that are still unseen—i.e. we generalize from the training
data. The general strategy is to propose a number of sets of
biterminal rules and a place to segment them, estimate the
posterior given the sets and commit to the best set. That
is: we do a greedy search over the power set of possible
segmentations of the rule set. This intractable problem can
be reasonably efficiently approximated.

The key component in the approach is the ability to eval-
uate the change in a posteriori probability if a specific seg-
mentation was made in the grammar. This can then be
extended to a set of segmentations, which only leaves the
problem of generating suitable sets of segmentations. Any
segment that can be reused maximizes the model prior. The
more rules we can find with shared biaffixes, the more likely
we are to find a good set of segmentations.

Our algorithm takes advantage of the above observation
by focusing on both the monolingual and bilingual affixes
(i.e., prefixes or suffixes) found in the training data. Each
affix or biaffix defines a set of lexical rules paired up with
a possible segmentation. We evaluate the (bi)affixes by es-
timating the change in posterior probability associated with
committing to all the segmentations defined by a (bi)affix.
This allows us to find the best set of segmentations, and
commit to as many of them as possible. Moreover, as we
generate new nonterminal categories during this process,
we also use affixes and biaffixes to suggest possible merges
of the nonterminal categories. This minimizes the parsing
efforts, which are more expensive. A priority queue based
agenda keeps track of possible candidates for rule segmen-
tation and nonterminal category actions, and always greed-
ily commits at each step to the action that best improves
overall posterior probability:

G = the transduction grammar
biaffixes to_rules = index of G's transduction rules by their (bi)affixes
lhs to rules = index of G's transduction rules by their LHS nonterms

(1
for each affix or biaffix x in G :

agenda = // Priority queue of actions by their DL impact on G
delta = eval_seg_post(x, biaffixes_to_rules[x], G)
if (delta < 0)
agenda.add (SEGMENT, x, delta)
while <0 :
if

agenda.pop (act, x)
(act == SEGMENT)
real_delta = eval_seg_post(x, biaffixes_to_rules([x], G)
if (real_delta < 0)
G, modified_rules = segment_rules(x, biaffixes_to_rules[x], G)
for each pair y of nonterms serving as LHS of modified_rules
that share a common (monolingual or bilingual) RHS :
delta = eval_merge post(x, biaffixes_to_rules[x], G)
agenda.add (MERGE, y, delta
(act == MERGE)
real_delta = eval_merge_post (y,
if (real_delta < 0)
G = merge_nonterms (y, lhs_to_rules[

else if

lhs_to_rules[yl, G)

vl, G)

Note that both affixes and biaffixes are handled in biaf-
fixes to_rules (since an affix can be regarded as a spe-
cial case of a biaffix where one of the two affixes is the
empty string €). We have written eval seg post and seg-
ment_rules as shorthand for the above-discussed evalua-
tion of the impact of a rule segmentation action upon the
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S— A
A—AA

Cajon

Palmas

Vel

ve
Vel

Cajon

Palmas

Figure 1. Initial transduction grammar with two training examples (see text). Lexical transduction rules are shown with
their biterminals in cajon and palmas staves using standard music notation for sequences instead of character strings.

posterior. This consists of removing the rule being seg-
mented, inserting the three new rules (one structural and
two terminal) along with two new nonterminals, and uni-
formly distributing the segmented rule’s probability mass
over the three new rules; exact mathematical details are
in [21]. Similarly, the shorthand eval merge post and
merge_nonterms denote consolidating the probability mass
of two nonterminal categories.

The change in the model prior is easy to estimate, as it
is proportional to the change in grammar length when the
old rule is removed and the new rules are inserted (keeping
in mind that a rule can only be added once, so if it already
exists inserting it will not change the description length).

The change in the probability of the data given the model
is expensive to get through biparsing the data, so instead we
accumulate enough statistics during biparsing to be able to
make an educated guess. We follow the analogous proce-
dure after merging two nonterminals.

Optimizing model parameters Although the iterative seg-
mentation of the rules result in reasonable parameters, there
is still room for improvement. In this phase we consider
the model structure to be fixed, and optimize the model
parameters to give the highest possible posterior probabil-
ity, i.e., we fix g (to be what we arrived at using the al-
gorithm described in the previous section), as well as ®¢
(which remains fixed as MTGs). The two remaining free
factors in the MAP are thus: P(0g | @5, P¢) and P(D |
D¢, Dg, 0g )—the prior over the parameters and the condi-
tional probability of the data given the complete model.

The prior is, as described earlier, a uniform Dirichlet
distribution over all the rules, which can be described using
a concentration parameter. To get the conditional, we have
to biparse the training data, and to maximize it, we per-
form expectation maximization [5], as a special case of EM
as specified for inversion transduction grammars by [30].
This requires biparsing, which we do with the cubic time
biparsing algorithm described in [22].

4. RESULTS

For our experiments we chose the bulerias form of fla-
menco because of its metrical and hypermetrical complex-
ity. Various passages from multi-track recordings were col-
lected, from which were taken approximately 5 minutes of
aligned cajon (box drum) and palmas (clapping percussion)
tracks. Symbolic “tick” notes were extracted from the ca-
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jon and palmas tracks via heuristics primarily relying on
a combination of volume and frequency range filters. For
the cajon the notes were separated into “bass”, “tone”, and
“tip” categories. For the palmas the notes were separated
into ordinary or accented notes. All notes were quantized
into 1/16th note intervals.

As no meaningful gold standard for mechanically eval-
uating the quality of the learned model exists, only subjec-
tive evaluations are possible. Moreover, variance in fla-
menco expectations is extremely large, and our subjective
evaluations were so close to 100% accuracy so as to be
swamped by statistical variance in human judgments. Rea-
sons for the high accuracy of the model can best be seen by
tracing specifically how it learns, looking at a small con-
crete subset of the training set.

Two short training passages are shown in Figure 1. Note
that in our induction method’s rule segmenting strategy,
the initial transduction grammar starts out containing one
rule for each training example, each belonging to the same
generic category A as shown by the left-hand-side nonter-
minal. In addition, the grammar contains the start rule and
a low-probability “glue rule” that allows arbitrary concate-
nation of any valid sequences when all else fails.

Learning metrical structure In the early iterations, the
MDL-driven induction algorithm primarily works toward
learning transduction patterns that are a single full compas
in length, i.e., a twelve beat cycle. This accurately mirrors
the primary (mixed meter) structure that is most common
and most fundamental in flamenco.

The two lexical transduction rules in the initial transduc-
tion grammar of Figure 1 share no biaffixes, but the first
half of the first lexical rule’s cajon part is repeated at the
end of the second lexical rule’s cajon part. Thus, the first
induction decision is to segment both lexical transduction
rules so as to gain the bits from efficiently encoding their
common cajon sequence, instead of redundantly enumer-
ating the same string twice. This yields a revised grammar

S— A ¢
i
A—d4 By e T T g .24
A—-BC -
A-DE C— ' é é é E E

with shorter description length, that introduces new nonter-
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minals so as to generate the same transduction as before.

In the new grammar, a shared biaffix is found, between
the second half of the C rule and the first half of the F
rule. Segmenting both rules, again introducing new non-
terminals as needed, yields:

S—4
A—AA
A—BC
A—DE
C—>FG
E—-GH

This has created another shared biaffix—the new H rule
is a bisuffix of the B rule. Segmenting the B rule yields:

S—4
A—AA
A—BC
A—DE
C—>FG
E—-GH
B—IH

Note that the algorithm has learned the full compas length

patterns. Typically, in subsequent iterations, the induction
process moves on to gradually learn mediocompas patterns
that are only six beats in length. Here, the next segmenta-
tion, based on the shared bisuffix of the D and F' rules and
biprefix of the G, H, and I rules, has this effect:

S— A caon I NEERBERRDRN )
ajon H— > !

A—Ad I P!nm‘.! J;jj] I |

A—BC AN

A—DE CMVM

C—FG K_>Pm|mua it ;‘j] >] T |

E—-GH

B—IH cmn’»m—<
D—JK Lg,mm‘" )Jj] BB |
F—KL
G—o>KM
H—KN
I—-KO

Cajén
N— I )

Palmas [H

0, M

Palmas [H— re

At this point, there are no more rules that can be seg-
mented to lower the description length. However, we no-
tice that it is still possible to improve the posterior prob-
ability of the model, because some of the newly created
nonterminal categories might be merged in such a way as
to improve the model structure prior P(®g | ® )by reduc-
ing the model’s description length in terms of the number
of nonterminal categories, without introducing so much er-
ror that it excessively decreases the likelihood of the data
P(D| ®g,Ps,0s).

The nonterminals that have just been created generate
four candidates for merging, since the algorithm considers
each pair of nonterms serving as the LHS of modified rules
that share a common RHS: J ~ K, J ~ O, K =~ L, and
M =~ N. Of these, K ~ L gives by far the best improve-
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ment in posterior probability, so we replace all instances of
L in the grammar with K instead.

The next best merge is J ~ K, so we replace in turn
all instances of K (including those formerly L) with J. In
so doing, the updated rules for D and F’ become identical,
both now with J J on the right-hand-side. Thus we propa-
gate the merging to replace all instances of F' with D, at no
additional cost. Similarly, merging M ~ N slightly im-
proves the posterior, and in so doing, the updated rules for
G and H become identical so we also merge H into G.

Merging J ~ K, K ~ L,and M ~ N inherently intro-
duces generalizations that are able to (bi)parse new exam-
ples outside the training set. The iteration terminates with-
out merging J =~ O which would introduce too much error
to improve the posterior. The final transduction grammar
induced is thus:

S—A4

A— A4
A—BC
A—DE
C—->DG
E—>GG
B—IG
D—JJ almas <
G—->JM
I—-JO

ajén
i
Cajon
J nd ﬁ

Palmas [t

o M

Palmas {H—3 re

Accurately reflecting flamenco norms, induction has cat-
egorized the mediocompas patterns into three distinct non-
terminal types: .J comprises patterns in 6/8 meter, while
M comprises patterns in 3/4 meter, and O is a polyrhyth-
mic pattern that crosses both. The fact that a distinction
between the two meters can be learned—even though our
current approach does not incorporate any explicit a priori
model of accented pulses at constant repeated intervals—
arises from the transduction grammar induction’s natural
integration of metrical structure learning together with hy-
permetrical structure learning, as discussed below.

Between the 6/8 and 3/4 transduction patterns, certain
common palmas sequences appear in both. This correctly
reflects conventional flamenco usage of palmas (playing
a similar function to clave patterns in Afro-Latin genres).
However, the 3/4 transduction patterns also tend more fre-
quently to relate certain palmas sequences that do not gen-
erally appear with 6/8 patterns. Such patterns tend to have
notes that align more naturally with 6/8 accents. Palmas
sequences are useful to learning because of their clave-like
function, even though they are not as consistent as Afro-
Latin clave, and are usually silent on what would be the
strong downbeat in most mainstream dance music forms.

Learning hypermetrical structure Among the many fla-
menco forms, the bulerias style is particularly aggressive
about using mediocompas patterns in irregular ways. The
learned rule G — J M models a regular full alternating
meter compas, while I — J O models the same polyrhyth-
mically against a 6/8 mediocompas feel. The rule D —
J J models a full compas in 6/8 mediocompas feel. The
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rules for B, C, and E model longer compas pairs, with
typical idioms such as staying in 6/8 meter until the final
fourth mediocompas. This behavior is naturally emergent
from the MDL-driven induction (even more so on larger
training sets).

Learning probabilistic transduction relationships The
induced transduction grammar is potentially useful in a wide
variety of applications, which we plan to investigate in de-
tail in our next steps. Currently, the learned model can
already be used to predict suitable accompaniment for ei-
ther instrumental part. Given a previously unseen cajon se-
quence, a Viterbi parse translates the sequence into the most
probable palmas sequence with nearly perfect accuracy.
Similarly, given a new palmas sequence, the model can
translate it into the most probable cajon sequence, which is
currently generally acceptable though not necessarily mu-
sically optimal. Our future work will focus on further re-
fining the predictive accuracy for accompaniment from a
stylistic standpoint.

The new MDL-driven transduction grammar induction
method we have introduced is the first to (1) exploit oppor-
tunities to compress both monolingual affixes and bilingual
affixes, (2) exploit regularities in either single language to
help segment rules describing both languages, and (3) ex-
ploit both monolingual and bilingual regularities to induce
categories for longer hypermetrical patterns. We anticipate
numerous further applications beyond the flamenco genre.

5. ACKNOWLEDGMENTS

This material is based upon work supported in part by the Hong Kong Research
Grants Council (RGC) research grants GRF620811, FSGRFI13EG28, GRF621008,
and GRF612806; the Defense Advanced Research Projects Agency (DARPA) un-
der BOLT contract no. HR0011-12-C-0016, and GALE contract nos. HR0011-06-
C-0022 and HR0011-06-C-0023; and by the European Union under the FP7 grant
agreement no. 287658. Thanks to Markus Saers, Karteek Addanki, Chi-kiu Lo, and
Meriem Beloucif for assistance with implementation. Any opinions, findings and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the RGC, EU, or DARPA.

6. REFERENCES
[1

—

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and
Compiling (Volumes 1 and 2). Prentice-Halll, Englewood Cliffs, NJ, 1972.

[2

=

Gérard Assayag, Georges Bloch, Marc Chemillier, Arshia Cont, and Shlomo
Dubnov. OMax Brothers: A dynamic topology of agents for improvization
learning. In First ACM Workshop on Audio and Music Computing Multimedia,
pages 125-132, 2006.

Rens Bod. Stochastic models of melodic analysis: Challenging the gestalt prin-
ciples. Journal of New Music Research, 30(3), 2001.

Ali Taylan Cemgil, Bert Kappen, Peter Desain, and Henkjan Honing. On tempo
tracking: Tempogram representation and Kalman filtering. Journal of New Mu-
sic Research, 29(4):259-273, 2000.

Arthur Pentland Dempster, Nan M. Laird, and Donald Bruce Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society. Series B (Methodological), 39(1):1-38, 1977.

Peter Desain and Henkjan Honing. Music, Mind, and Machines: Studies in Com-
puter Music, Music Cognition, and Artificial Intelligence. Thesis Publications,
Amsterdam, 1992.

J. Miguel Diaz-Bafiez, Giovanna Farigu, Francisco Gémez, David Rappaport,
and Godfried T. Toussaint. El compas flamenco: A phylogenic analysis. In
BRIDGES: Mathematical Connections in Art, Music and Science, pages 61-70,
Southwestern College, Winfield, Kansas, Jul 2004.

Alexandre R.J. Frangois, Elaine Chew, and Dennis Thurmond. Mimi - a musical
improvisation system that provides visual feedback to the performer. Technical
Report 07-889, USC Computer Science Department, Apr 2007.

160

[9] Alexandre R.J. Frangois, Isaac Schankler, and Elaine Chew. Mimi4x: An inter-
active audio-visual installation for high-level structural improvisation. In JEEE
International Conference on Multimedia and Expo (ICME 2010), pages 1618—
1623, 2010.

Jon Gillick, Kevin Tang, and Robert M. Keller. Machine learning of jazz gram-
mars. Computer Music Journal, 34(3):56—-66, Fall 2010.

Catherine Guastavino, Francisco Gomez, Godfried Toussaint, Fabrice Maran-
dola, and Emilia Gomez. Measuring similarity between flamenco rhythmic pat-
terns. Journal of New Music Research, 38(2):129-138, 2009.

[12

Emilia Gomez and Jordi Bonada. Automatic melodic transcription of flamenco
singing. In Fourth Conference on Interdisciplinary Musicology (CIM0S), Thes-
saloniki, Greece, Jul 2008.

[13] Karim Lari and Steve J. Young. The estimation of stochastic context-free gram-
mars using the inside-outside algorithm. Computer Speech and Language, 4:35—
56, 1990.

=

Fred Lerdahl and Ray Jackendoff. 4 Generative Theory of Tonal Music. MIT
Press, 1983.

(15

Philip M. Lewis and Richard E. Stearns. Syntax-directed transduction. Journal
of the Association for Computing Machinery, 15(3):465-488, 1968.

[16] Hugh Christopher Longuet-Higgins and Mark J. Steedman. On interpreting

Bach. Machine Intelligence, 6:221-241, 1971.

[17

Joaquin Mora, Francisco Gémez, Emilia Gomez, Francisco Escobar-Borrego,
and José Miguel Diaz-Baiiez. Characterization and melodic similarity of a cap-
pella flamenco cantes. In 1/th International Society for Music Information Re-
trieval Conference (ISMIR), pages 351-356, 2010.

Frangois Pachet. The continuator: Musical interaction with style. Journal of
New Music Research, 32(3):33-341, 2003.

[19

Dirk-Jan Povel and Peter Essens. Perception of temporal patterns. Music,
2(4):411-440, Summer 1985.

[20

Christopher Raphael. A hybrid graphical model for rhythmic parsing. Artificial
Intelligence, 137(1-2):217-238, May 2002.

[21] Markus Saers, Karteek Addanki, and Dekai Wu. Iterative rule segmentation un-
der minimum description length for unsupervised transduction grammar induc-
tion. In Adrian-Horia Dediu, Carlos Martin-Vide, Ruslan Mitkov, and Bianca
Truthe, editors, First International Conference on Statistical Language and
Speech Processing (SLSP 2013), volume 7978 of LNAIL, pages 224-235, Tar-
ragona, Spain, Jul 2013. Springer.

[22

Markus Saers, Joakim Nivre, and Dekai Wu. Learning stochastic bracketing in-
version transduction grammars with a cubic time biparsing algorithms. In //th
International Conference on Parsing Technologies (IWPT’09), pages 29-32,
Paris, Oct 2009.

Mark J. Steedman. The perception of musical rhythm and metre. Perception,
6(5):555-569, 1977.

Mark J. Steedman. The formal description of musical perception. Music Per-
ception, 2:52—77, 1984.

Mark J. Steedman. The blues and the abstract truth: Music and mental models.
In A. Garnham and J. Oakhill, editors, Mental Models in Cognitive Science,
pages 305-318. Erlbaum, 1996.
[26] Reid Swanson, Elaine Chew, and Andrew S. Gordon. Supporting musical cre-
ativity with unsupervised syntactic parsing. In 4441 Spring Symposium on Cre-
ative Intelligent Systems, 2007.

[27

David Temperley. Music and Probability. MIT Press, 2007.

[28

David Temperley and Daniel Sleator. Modeling meter and harmony: A
preference-rule approach. Computer Music Journal, 23(1):10-27, 1999.

[29

Eric Thul and Godfried T. Toussaint. On the relation between rhythm complex-
ity measures and human rhythmic performance. In Conference on Computer
Science & Software Engineering (C3S2E ’08), 2008.

Dekai Wu. Trainable coarse bilingual grammars for parallel text bracketing. In
Third Annual Workshop on Very Large Corpora (WVLC-3), pages 69-81, Cam-
bridge, MA, Jun 1995.

[31

Dekai Wu. Stochastic Inversion Transduction Grammars and bilingual parsing
of parallel corpora. Computational Linguistics, 23(3):377-404, Sep 1997.

32

Dekai Wu. Alignment. In Nitin Indurkhya and Fred J. Damerau, editors, Hand-
book of Natural Language Processing, pages 367-408. Chapman and Hall /
CRC, second edition, 2010.



	Front Cover
	Sponsors & Support
	Conference Committee
	Reviewers
	Table of Contents
	Preface
	Keynote Talk
	Tutorials
	Panel Session
	Oral Session 1: Representation and Learning
	Poster Session 1
	Oral Session 2: Musical Cultures
	Oral Session 3:Text Processing
	Poster Session 2
	Oral Session 4: Music Signal Analysis
	Oral Session 5: Source Identi cation and Separation
	Oral Session 6: Listeners
	Poster Session 3
	Oral Session 7: Symbolic Data Processing
	Oral Session 8: Music Similarity
	Oral Session 9: Structure and Form
	Author Index
	Back Cover

