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Abstract

The use of higher-order polynomial acoustic features can
improve the performance of automatic speech recognition.
However, the dimensionality of the polynomial representation
can be prohibitively large, making the training of acoustic mod-
els using polynomial features for large vocabulary ASR systems
infeasible. This paper presents an iterative polynomial training
framework for acoustic modeling, which recursively expands
the current acoustic features into their second-order polynomial
feature space. In each recursion the dimensionality is reduced
by a linear projection, such that increasingly higher order poly-
nomial information is incorporated while keeping the dimen-
sionality of the acoustic models constant. Experimental results
obtained for a large-vocabulary continuous speech recognition
task show that the proposed method outperforms conventional
mixture models.

Index Terms: Discriminative training, polynomial features,
feature transformation

1. Introduction

The use of second-order polynomial features improves the per-
formance of phone classification [1], and automatic speech
recognition (ASR) systems [2, 3]. Higher-order polynomial fea-
tures [4, 5], as a natural extension to the second-order polyno-
mial features, might convey discriminative information which
adds to the first-/second-order polynomial features and might
improve ASR performance. Pioneering research [6, 7, 8] has
already reported a decrease of the word error rate by using third-
order polynomials. Therefore, the performance of ASR systems
might be expected to benefit from extending the feature space
by adding higher-order (> 4) polynomials.

However, expanding the feature space by adding > 4-order
polynomials for acoustic modeling of ASR may be infeasible in
actual practice, especially if a long contextual window is used
[8] to characterize each frame. The resultant higher-order poly-
nomial feature space will have a prohibitively large dimension,
which makes it practically impossible to train the acoustic mod-
els. Motivated by these facts, this paper addresses a novel com-
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putationally feasible approach, by seeking a low-dimensional
subspace in the higher-order polynomial feature space that con-
tains most of the relevant information. The basic idea is to
iteratively expand the feature space via its second-order poly-
nomials and log-linearly train a low-dimensional representation
[9, 3] in the expanded feature space to formulate a new feature
space. During the iterative procedure, the higher-order poly-
nomials (> 4 degree) are implicitly involved in the log-linear
acoustic models. The second-order polynomial expansion and
the subsequent dimensionality reduction can also guarantee that
the combination of (higher-order) polynomials is compact and
the computational burden is affordable.

This paper is organized as follows: Section 2 briefly re-
views the log-linear acoustic models and their representation
with polynomials. The iterative training framework is then pre-
sented in Section 3. Section 4 and Section 5 show the experi-
mental setup and results in a large-vocabulary corpus, followed
by Section 6 with conclusions.

1.1. Relation to Prior Work

This paper presents an algorithmic framework that makes it pos-
sible to train > 4-order polynomials for ASR, whereas previous
works on explicit polynomial feature training could only afford
to use < 3-order polynomials [6, 7, 8, 2, 3]. Most works explor-
ing the higher-order polynomial feature space rely on the use of
polynomial kernels [4, 5], which is infeasible in the case of the
large amounts of training data that are necessary in ASR.

2. Log-Linear Acoustic Modeling

Assume that the acoustic representation of a speech frame is
denoted by ' € RP, with a label belonging to one of S tri-
phone classes. Each class s = 1,2,...,S can be modeled by
Gaussians with the parameter set s = {us, s}, which can
be trained by Maximum Likelihood (ML) estimators. Gaussian
models can be converted to log-linear models [10] by collecting
the quadratic and first-order terms of & (as well as a constant):

exp(fTASf+ AT+ as)
S exp(@TAgE+ AT+ ay)

po(s|Z) = ey

in which 0 = {As, A\s,as,s = 1,2,...,5}. The most con-
spicuous advantage of log-linear models over Gaussian models
lies in the fact that the exponential terms do not strictly need to
be probability distributions.



The quadratic log-linear models can be simplified by setting
A=0]8,10,3]

exp(A\d T+ )
o+ exp(ALZ + o)

po(s|¥) = 5 @

The Maximum Mutual Information (MMI) criterion is
adopted as the frame-level objective function:

R Ty

F(\ o) =—=7ol[\alP + >0 logprals:|®) 3

r=1t=1

2.1. Log-Linear Models in Polynomial Feature Space

The feature vector & can be expanded by its degree-N polyno-
mials ¢ (%) as:

o (@) = {2 ey 2P} ia € {0,1,..., N} )

The posterior probability estimated by log-linear training on the
degree- N polynomials could be written by:

exp(\d o~ (Z) + as)
o exp()\z,qu (%) + ay)

po(s|T) = > ®)

2.2. Dimensionality Reduction for Log-Linear Models

A linear feature transformation matrix A € RP *c#rd(¢x (#))
for reducing the dimension of ¢ (Z) can be introduced in the
log-linear model [3, 9], such that the posterior probability is
estimated as follows:

exp(A; Agn (Z) + as)
S exp(ALAGN(T) + o)

(6

po.a(s|T) =

which reduces the dimension of A to D’. Setting N as 1 and 2
results in the methods proposed by [9] and [3], respectively. An
iterative procedure can be used to obtain A and )\ by alternate
convex optimization of one parameter set with a fixed value of
the other parameter set. To implement a gradient-based opti-
mization, an initial value of A (%) is needed, which is computed
by a conventional linear discriminant analysis [3].

This new formulation diminishes the storage cost in com-
parison with the full log-linear training shown in Equation 2,
especially for the log-linear models in the higher-order (N > 3)
polynomial feature space (Equation 5) [3]: the number of log-
linear parameters in Equation 5 is greatly reduced by the pro-
jection A, at the negligible cost of keeping A itself. Moreover,
the high redundancy incurred by the polynomial representation
definitely means that the effective dimensionality of the feature
space is much lower, which also shows the importance of di-
mensionality reduction (by A) in the polynomial feature space.

However, directly training the log-linear model (Equa-
tion 6) when NV > 3 is not computationally feasible for a large
training corpus. One reason is that the size of A might still
be prohibitively large. More importantly, the convergence rate
is very slow [6] when both the number of free parameters and
training samples are large, which makes the training procedure
extremely inefficient. In the next section, a novel method will
be proposed to train the log-linear models and projections in
higher-order polynomial feature space.

3. Proposed Method
3.1. The Iterative Polynomial Expansion Framework

Although the cardinality of the projection matrix A in Equa-
tion 6 is prohibitively large, one property of polynomials might
make it possible to learn the linear combinations of higher-
order polynomials: the feature space spanned by the second-
order expansion vec(7j' ), (¥ = B&, B € R™*P, r < D)
is still a linear combination of the feature space of ¢2(Z) =
vec(ZZ") by noticing 7j' = Bz B, where the opera-
tor vec(-) stands for the vectorization of a matrix. Each el-
ement of vec(4ij' ) is a linear combination of vec(7y' ) and
consequently projecting the feature space vec(ﬁjT) by the lin-
ear projector A could be regarded as an approach to learn the
(constrained) linear weights for log-linear optimization.

Repeating this procedure makes it possible to learn the opti-
mal weights on higher-order polynomials: if the original feature
vector Z contains the information of 2°-order polynomials, the
resultant 4 will reflect that of 2°*-order polynomials as shown
in Figure 1. The algorithmic description is given as follows:

e Step 1, Initialization: Train the conventional LDA
on the original feature  and project it into a low-
dimensional representation, namely Zo = WrpaZ. Set
the number of iterations £ = 0.

e Step 2, Second-Order Polynomial Expansion: Gener-
ate the second-order polynomial of ), as Z;Z; . Concate-
nate its vectorized representation vec(ZjZ), ) with Z,
which results in 7 = [vec(ZZ) )| ] € RO,

e Step 3, Log-Linear Training of the Projection Matrix
[9]: Train the projection matrix A, € R"™ X% Jog-
linearly using Equation 7:

eXp()\lkAkgk + as,k)
o eXp(A;r,,kAkgk —+ as/’k)

pey., A (s|Yk) = > @)

The outputs of this step are A}, and Ay, the final estima-
tors of Ay and Ay, after the iterative training [9].

e Convergence Criterion: If the MMI score (Equation 3)
does not increase, terminate this algorithm. Otherwise,
generate Zy4+1 = Akgj'k, increment k by 1, and return to
Step 2.

3.2. Initialization of the Log-Linear Training

The log-linear training in Step 3 depends crucially on rea-
sonable initial values of the projection matrix and log-linear
weights A,(;)) and )\,(CO). One reason why good initial val-
ues are crucial is the fact that the large scale of ASR train-
ing data makes it likely that the algorithm will suffer from
a slow convergence to a (local) maximum. Therefore, A
(¢ R™*?) and corresponding ), are initialized by setting
Ag)) = [0ry x(dj,—ry) | Lry x| and )\,i,m = Ap_1. It can be
inferred that this initialization guarantees that the MMI score
of the new iteration is exactly identical to that of the previous
iteration:

- -l R R
A [ o] [ A
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Figure 1: The flowchart of proposed iterative higher-order polynomial acoustic model training framework

Since the iterations continuously absorb more discrimina-
tive information from the higher-order polynomials, the low-
dimensional reduced vector might not be able to capture such
additional information and need to be augmented:

O(Tk+1*%)><(dk*rk) O(Tk+1*Tk)><Tk

Compared with A}, defined in the previous subsection, the
matrix 0(rk+1—rk)xdk is inserted. Accordingly, )\20) is also
augmented by its copy, which results in /\/}(co) = [/\;0) |)\,(€0>].
It can be seen that /\’,(CO)A’§€0> = /\;O)A,(QO). Therefore, the addi-

tional rows can be expected to learn the additional information
when higher-order polynomials are considered.

4. Experimental Setup

In this paper, a large-vocabulary continuous speech recognition
task is performed to show the usefulness of the higher-order
polynomial features trained by the proposed framework. The
corpus is from the task of European Parliament Plenary Ses-
sions (EPPS), which contains speeches of the European Par-
liament in British English under clean conditions. The train-
ing corpus is 40.8 hours and the evaluation corpus is 3.5 hours.
The lexicon contains 54k words and there is a 4-gram language
model.

The acoustic representation is composed of 16 MFCC fea-
tures and 1 voicing feature. Nine consecutive frames are stacked
together, and reduced by LDA to a 45 dimensional feature vec-
tor. There are 4501 triphone CART-based generalized triphone
states.

5. Results and Discussions
5.1. Effectiveness of Using Higher-Order Polynomials

The Word Error Rate (WER) after each step of polynomial ex-
pansion and linear projection is shown in Table 1; the results
of using first-order and second-order polynomials have already
been reported in [9] and [3]. The row "1st, log-LDA” [9] refers
to a setup where the feature transformation matrix has also been
trained discriminatively The acoustic models with two addi-
tional iterations, meaning the usage of 4th and 8th order poly-
nomial features, achieve 1.8% and 2.1% absolute WER reduc-
tions over the acoustic model using 2nd-order polynomial fea-
tures. Even compared with a log-linear model with full covari-
ance information [8], which achieves at WER of 20.8%, the

model with 4th-order polynomial features shows superior per-
formance. Thus, invoking higher-order polynomial features is
promising, both in terms of WER and computational complex-
ity.

Another important observation from Table 1 is the depen-
dence of WER on the number of output dimensions with poly-
nomial features. The 8th order polynomial features yield a
WER of 19.0% if 45 output dimensions are used. If the num-
ber of output dimensions is increased to 90, WER decreases to
18.2%. This indicates that for representing the increased infor-
mation of higher order polynomial features, the dimensionality
of the resulting feature space needs to be increased somewhat.

Table 1: WER of EPPS dev2007: Mixtures vs. Polynomials

Polynomial Training | Feature | Num. | WER
Order Criterion | Dim. Para. | (%)
1st ML 45 213k 28.3
1st MMI 45 213k 25.3
1st, log-LDA [9] | MMI 45 213k 23.5
1st, 2 mixtures MMI 45 433k 20.2
1st, 4 mixtures MMI 45 853k 18.4
\ full 2nd order \ MMI \ 1080 \ 4972k \ 20.8
2nd [3] MMI 45 263k 21.1
4th MMI 45 311k 19.3
8th MMI 45 359k 19.0
8th MMI 90 611k 18.2

5.2. Analysis on the Computational Costs

For practical use of high-order polynomial features it is very
important to analyze the computational costs when introducing
these features in the acoustic models. In Table 1, the results ob-
tained with increasing the number of the mixture densities with
first-order polynomial features are also presented. The num-
ber of parameters in these models increases linearly with the
number of mixtures. From the Table it can be seen that when
using the higher-order polynomial models competitive WERs
can be obtained with a smaller number of parameters that when
increasing the number of mixture densities.

Figure 2 visualizes the relationship between the number
of parameters and WER for the systems adopting polynomi-
als and mixtures. It can be seen that the proposed polynomial-
based method improves the ASR performance to the same ex-
tent as when using mixture densities, at a lower cost in terms
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Figure 2: EPPS dev2007: WER(%) vs. No. of parameters for
polynomial features in comparison with mixture densities

of the number of involved parameters. This suggests that the
polynomial features achieve a more compact representation
than the mixture models. Moreover, it is interesting to ob-
serve that the acoustic models with 8th-order polynomials and
90-dimensional features yield slightly lower WER with much
fewer parameters than the mixture models with 4 densities. This
confirms that using polynomial features is a very promising ap-
proach.

6. Conclusions

In this paper, we presented an iterative log-linear training frame-
work, which can harness crucial information from the higher-
order (> 3) polynomial feature space. The main highlight is
that the framework allows us to train log-linear models in the
otherwise prohibitively high-dimensional feature space spanned
by higher-order polynomials. By repeating the second-order
polynomial expansion n times, 2™-order polynomial features
are embedded into the log-linear models. Following each dou-
bling of the polynomial feature order, the subsequent linear pro-
jection limits the dimensionality of the reduced feature space,
such that the iterative expansion does not lead to a computa-
tionally prohibitive feature space. ASR performance obtained
on the EPPS corpus revealed that the use of increasingly higher
order polynomials is computationally feasible and improves the
log-linear acoustic models. Moreover, conquers the combinato-
rial complexity of high-order polynomial features by combining
successive doubling of the order of polynomial features and ap-
plication of linear dimension reducing transforms to the result-
ing features. It leads to moderate improvements in ASR per-
formance at a significantly lower number of parameters, which
indicate the potential of the approach.
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