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ABSTRACT

We explore the impact of speech- and speaker-specific mod-
eling onto the Modulation Spectrum Analysis – Kolmogorov-
Smirnov feature Testing (MSA-KST) characterization method
in the task of automated prediction of the cognitive impair-
ment diagnosis, namely dysphasia and pervasive development
disorder. Phoneme-synchronous capturing of speech dynam-
ics is a reasonable choice for a segmental speech characteri-
zation system as it allows comparing speech dynamics in the
similar phonetic contexts. Speaker-specific modeling aims at
reducing the “within-the-class” variability of the character-
ized speech or speaker population by removing the effect of
speaker properties that should have no relation to the char-
acterization. Specifically the vocal tract length of a speaker
has nothing to do with the diagnosis attribution and, thus,
the feature set shall be normalized accordingly. The result-
ing system compares favorably to the baseline system of the
Interspeech’2013 Computational Paralinguistics Challenge.

Index Terms— speech characterization, feature selec-
tion, modulation spectrum

1. INTRODUCTION

Detection and differentiation between distinct types of speech
production impairments is important in medical domain for
the large scale inexpensive and noninvasive pre-screening of
children for cognitive development disorders. Self- adminis-
tered measurement of the severity of speech production im-
pairments is deemed to be very helpful in compensatory ther-
apy and symptom management of the cognitive deficiency as
it is the least embarrassing for the patient. Automated spoken
agents would also benefit from the ability to adjust depend-
ing on cognitive abilities of the user. Speech is a complex
and rapid cognitive process, thus, one can expect that vari-
ous types of cognitive deficiencies would manifest themselves
differently in speech. It is reasonable to conjecture that articu-
lation, as the most rapid of speech production processes, shall
be among the most informative data sources. Articulation is
also convenient because its proper measurement does not re-
quire involvement of overly complex, noisy and error-prone

models (i.e. lexicon, syntax, semantics, pragmatics, rhetoric).
In the present experiment we use the data that has been

distributed for Interspeech’2013 Computational Paralinguis-
tics Challenge [1]. Specifically the task is to discriminate
automatically between autism, non otherwise specified per-
vasive developmental disorder, aphasia (partial loss of speech
function, termed as dysphasia) and examples of normal cog-
nitive function [3],[4]. Speech is sampled as short non-
spontaneous read (or repeated) complete sentences. The
dataset is split by the organizers into training (903 utterances),
development (819 utterances) and test (820 utterances) sets.
Test set labels are not available to prevent model tuning for
the specific test set. Each Challenge participant has at most
five attempts to verify the generated test set labels by submit-
ting them to the organizers via a web interface. The dataset
contains instances of speech recordings from about a hundred
young native speakers of French (age distribution between 6
and 18 years old).

As a starting point for the described experiment we use
our existing universal speech characterization system [2]. The
core MSA-KST method has proven to be an efficient tool to
capture speech dynamics in a statistical model. Essentially
the method consists of

• Over-generation of possible features in spectral –
modulation-spectral domain (see Fig. 1) and creating
an exhaustive description of a non-stationary source
dynamics.

• Pruning the resulting feature space with a statistically-
motivated criterion. Experimentally it has been found
that the non-parametric Kolmogorov-Smirnov statisti-
cal test, applied at the level of individual features works
as reasonable computationally efficient heuristics.

The versatility of the MSA-KST speech characterization
method is provided by the ability to find useful features for
empirically defined tasks. No prior theories about character-
ization are required to develop a characterization system for
the particular task. In the present work we propose two essen-
tial ways to improve the original system of [2]:
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Fig. 1. Schematic structure of the MSA feature extraction.

• Phoneme-type conditioned statistical models of speech
dynamics (similar to what has been done in [5]). Our
conjecture is that phoneme conditioning should aid ro-
bustness of the resulting model towards the phonetic
content of the speech sample.

• Vocal Tract Length Normalization (VTLN) [6] of the
data. The VTLN should be essential because the data
in the Computational Paralinguistics Challenge and
one of possible target application domains are specifi-
cally geared towards recognition of children’s speech.
VTLN is implemented in MSA domain via Warped
Discrete Fourier Transform (WDFT).

The paper is organized as follows: second section dis-
cusses modification of the original MSA feature extractor,
which enables it to compensate for the length of the vocal tract
of a subject; third section explains our approach to phoneme-
conditioned segmental modeling; fourth section outlines the
experiments that have been performed in order to evaluate the
presented modifications; conclusions are presented in the end
of the paper.

2. VTLN IMPLEMENTATION IN MSA

There is a possibility to implement the VTLN procedure via a
substitution of the conventional short time Fourier transform
of the first stage of the modulation spectrum analysis (MSA)
algorithm (see Fig. 1) with the WDFT [7, 8].

Frequency warping is a conformal map in the z-plane,
which transforms the unit circle into itself. Particularly, a
map, which is defined by the first order all-pass filter of the
form:
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Fig. 2. Warped Discrete Fourier Transform (WDFT) scale
alternation.
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Here ϕ is a “linear” frequency scale (which constitutes to
the unit circle in the z-plane), and ψ is a “warped” frequency
scale in the z̃-plane by transformation (1). Frequencies ψ and
ϕ are the normalized and, thus, do not depend upon the sam-
pling rate.

With 0 < ρ < 1 the transformation (1) stretches spec-
tral bins in the low-frequency range and compress them in the
high-frequency range. With −1 < ρ < 0 it does the other
way around by stretching the high-frequency range and com-
pressing the range at low-frequencies (see Fig. 2 for details).

Each speaker has his/her optimal value for the ρ parame-
ter. With this speaker-dependent optimal ρ the transformation
(1) of the frequency scale of MSA analysis will make the re-
sulting feature set approximately invariant of the length of the
speaker’s vocal tract.

Learning a specific value of ρ that fits the speaker under
consideration is done via matching the transformed speech
against a general speech model. Below is a summary of the
algorithm:

• Train a GMM general speech model from a large body
of speech. Feature extraction method for this step is
a classical set of first 13 cepstral coefficients drawn
from the fully decimated output of a filter bank com-



plimented with estimates of their two first derivatives
(39 features in total);

• Estimate the generation likelihood of the speech com-
ing from a particular speaker according to the GMM
model;

• Repeat the above procedure for a range of plausible val-
ues of ρ;

• Select the ρ value that gives the largest likelihood as
an optimal value for the speaker and use it for feature
extraction;

• The whole described procedure might be iterated fur-
ther to make sure that the GMM in the first step has
been trained on the speaker-invariant data.

The interval of−0.2 < ρ < 0.2 is sufficient to cover vari-
ation in adults and, as it has been experimentally found,
is mostly sufficient for kids between 6 and 19 years of
age. The range of estimated value in this experiment is
ρ ∈ [−0.01; 0.24].

The more speaker specific data is used in estimation of ρ
the more precise and unambiguous the final result could be.
Fig. 3 presents an exemplar outcome of such procedure. Here
the speech evidence is sufficient to observe a clear maximum
at ρ = 0.06.

As a sanity check for the parameter estimation procedure
we have calculated the correlation between the parameter ρ
and the reported age of a child. For the most successful con-
figuration of the GMM model (one, containing 128 mixture
components) such correlation is observed as high as 0.6740.
This fact is encouraging as it is known from the statistics of
child development that correlation between the age and height
of a child is about 0.7 [9]. And length of the vocal tract has
a very strong statistical relation with the height of a subject,
e.g. a statistical analysis [10] of the relation of the vocal tract
length and the height of subjects aged between 2 and 25 has
revealed very high correlation (0.926).

Fig. 4 presents a comparative illustration of the MSA fea-
tures computed with different values of ρ parameter. As it
can be seen, with ρ > 0 the lower part of the spectrum gets
stretched at the expense of compressing the higher part. If
ρ < 0 the picture is inverse - the higher spectrum stretches
while the lower gets compressed.

The training and development divisions are provided with
a speaker label for each sentence. For the test, however, there
is a need to automatically cluster utterances into groups, al-
legedly coming from the same speaker. In order to estimate
the most plausible division of test utterances into speaker-
specific clusters we generally follow the approach of iterative
speaker normalization of [11].

In practice however, evaluation of the appropriate ρ shall
not present a significant obstacle as an accurate measurement
of the patient’s height is readily available in most of the cases.
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Fig. 3. Dependence of speech log-likelihood over the value
of VTLN correction parameter ρ.

For telemedical applications the estimate of ρ can be drawn
from the sufficient statistics of the patient’s speech.

3. PHONEME-CONDITIONED MODELING

Phoneme-conditioned statistical models are implemented for
broad phonetic classes, that follow five main manners of ar-
ticulation:

• vowels {a,e,E,i,o,O,u,@,9}, which comprise 43.24%
of total phonemes in transcription;

• plosives {b,p,d,t,g,k} occurring in 28.12% of cases;

• approximants, glides, trills and flaps {w,y,l,j,R} occur-
ring in 10.64% of cases;

• nasals and nasalized vowels {ã ,ẽ ,õ ,9̃ ,m,n} occurring
in 10.04% of cases;

• fricatives {f,H,s,S,v,z,Z} occurring in 7.95% of cases;

• the silence class, which sometimes contains vocaliza-
tions, that are far from any typical phoneme realization.

The underlying hypothesis for splitting a universal speech
model into phone-specific parts is that pronunciation for dif-
ferent phonetic classes is affected in different ways and that
the universal model is too crude of representation, which av-
erages out some of the important characteristic distinctions.
This conjecture is well grounded as instances of different pho-
netic classes have energy concentrated different regions in
modulation-spectral domain. They also have different charac-
teristic lengths, and are stretch-able to different extents. It is
also reasonable to assume that consistency of the pronuncia-
tion alternations within phonetically-grouped classes is going
to be higher.
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Fig. 4. Exemplar MSA feature set (log-variances of individual modulation spectrum bins through a speech sample).The plot is
given for three values of ρ: ρ=0 (no distortion), ρ=0.5 (low spectral frequencies get stretched), ρ=-0.5 (high spectral frequencies
get stretched). A, B, C, D - specific distinctive features on the spectral – modulation-spectral plane, which illustrate stretching
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Phonetic transcription that is required to perform pho-
netic conditioning is obtained through force alignment of
the available audio against the corresponding word string
by the French ASR system that is developed at Fondazione
Bruno Kessler. There are some cases where forced alignment
fails completely because of the severe differences between
the recorded audio and the intended sentence. In such cases
we are backing off to the decision, provided by the system
without phonetic conditioning.

For the test set we hypothesize that the data consists of
the same set of 26 different sentences, that are found in the
training and development part. This assumption follows from
the database description, provided by the Interspeech’2013
Computational Paralinguistics Challenge organizers [1]. We
do recognition of the provided audio with a phonetic network,
that incorporates all 26 known sentences as recognition alter-
natives.

Each of the phonetically-conditioned classifiers is trained
independently on the corresponding training data that is ex-
tracted from the total available material. At the recognition
stage the likelihoods estimated by individual models are com-
bined into the final decision of the system.

4. EXPERIMENTS

As in our previous system [2] we extract MSA features at 5
different rates with the analysis width being 8, 16, 32, 64 and
128 samples. The width of analysis window in modulation

spectrum estimation always matches that from spectral esti-
mation. Frame shift is always a half of the analysis frame.
We convert spectral representation to log-power spectral do-
main and perform frame-mean subtraction before computing
the modulation spectrum. The difference with the previous
version however is in reduction of number of statistics com-
puted over the sequence of raw features, this time only vari-
ance and kurtosis are computed. Thus, the whole set of MSA
features plus the baseline set amounts roughly to fifty thou-
sand different features before pruning.

KST pruning for the present experiment has been done as
a selection of five thousand best features for the binary classi-
fication tasks separating each of the existing diagnoses from
the rest. A combination of the selected sets is used as a KST
prediction for the 4-way classification task.

In order to verify validity of the proposed feature extrac-
tion and selection strategies a recognition experiment has
been performed. The recognizer is implemented as an adap-
tive meta-learning that aims at combining an ensemble of
weak classifiers to form a strong classifier over one-level de-
cision trees (Adaboosting) [12]. Specifically, an open source
implementation “icsiboost” is used. Training is done for 600
iterations. The classifier is trained for a 4-way classification
task to determine a diagnosis of the patient. The figures for
the typicality classification are obtained by reassignment of
the labels after a 4-way classification. This way we’re not
getting the top possible performance in typicality task as we
have experimentally observed improvements by training a
separate dedicated 2-way classifier.



Table 1 summarizes recognition results on the official
Computational Paralinguistics Challenge evaluation sets (de-
velopment and test). Along with the challenge organizers
have provided their baseline system results [1], which are ref-
ered as “BL” in the table. Not all measurements are present
for the official test set as only five attempts are allowed per
Challenge participant. However, comparison of the figures
achieved on the development and test portions indicate ab-
sence of overfitting by tuning towards the development set.
Unweighted Average Recall (UAR) between m = 1..M clas-
sification categories is chosen as the figure of merit according
to the requirements of the Challenge [1]:

UAR =
1
M

∑
∀m

NCorrm

NTotm

. (3)

HereNCorrm is a number of correctly classified instances
of the categorym,NTotm is a total number of instances of the
category m.

As it can be seen from the table, KST pruning brings a
significant improvement to the classifier performance, which
is inline with our expectations as well as recognition exper-
iment from [2]. VTLN does improve classification perfor-
mance even better. Joint application of KST and VTLN rises
performance further.

Employment of phonetically conditioned models also
brings a significant improvement, although to somewhat
lesser than expected extent. More detailed analysis of con-
fusion matrix allows to see that majority of confusion occurs
between autism (PDD) and pervasive development disorder
non otherwise specified (NOS) cases. This behavior is very
much expected as separation between the classical and non-
specific autism types is the hardest task of all trained in the
present experiment. The recall value for typically developing
subjects is 93.55% and that for dysphasic subjects is 84.62%.

As anticipated, a combination of the VTLN and pho-
netic conditioning makes the system performance to go even
higher. The VTLN and phonetic conditioning are aimed at
improving different aspects of the feature extraction mecha-
nism. Their effect on the information content of the features
should have approximately additive effect.

Having more data from the subject allows to build much
better classification systems. See, for example, results
obtained for the configuration “+KST+VTLN+MV” and
“+KST+PHO+MV”. This is a situation when we applied
label post-processing by majority vote within each speaker.
Unfortunately we are not successful in deciphering speaker
attribution for the test partition with automatic means. Our
figures for the official test set UAR in “+KST+VTLN+PHO”
were 61.78%, 61.55% and 61.62% depending on different
tuning of speaker clustering procedure. The UAR averages
for the “+KST+VTLN+PHO” case are presented in Table 1.
However, in practical applications the true speaker identity is
not hidden from the system.

Another interesting observation is an apparent presence
of certain kind of label post-processing in the baseline figures
for the Autism Challenge. Judging from the figures alone it
appears that there is either a label post-processing or the clas-
sification task of the test set is much simpler that of the de-
velopment set (UAR of ∼ 67% vs ∼ 55%), however, our
experience of submitting our results on the test set indicates
that the test task is of similar complexity compared to the de-
velopment case.

Table 1. Performance of predictors of individual diagnosis
(DIAG) - 4-way classification between autism a.k.a. Perva-
sive Development Disorder (PDD), Pervasive Development
Disorder Non-Otherwise Specified (NOS), Dyspasia (DYS),
Typical development (TYP) and detection of typicality of
development (TYP-TY) - 2-way classification between typ-
ical (TYP) and atypical (ATP) development;“UAR” – un-
weighted average recall; “DEV” – development set;“TEST”
– test set;“BL” – baseline;“MSA+BL” – a union of MSA
& Baseline features; “+KST” – MSA+BL features, pruned
with KST;“+VTLN” – MSA+BL features, obtained with
vocal tract normalization;“+KST+VTLN” – MSA+BL fea-
tures, obtained with vocal tract normalization & pruned
with KST;“+KST+VTLN+MV” – MSA+BL features, ob-
tained with vocal tract normalization & pruned with KST,
a majority vote over individual utterances decides a diag-
nosis label for a given speaker;“+KST+PHO” – MSA+BL
features, pruned with KST, recognizer utilizes phonetically-
conditioned models;“+KST+VTLN+PHO” – MSA+BL fea-
tures, obtained with vocal tract normalization, pruned
with KST, recognizer utilizes phonetically-conditioned mod-
els;“+KST+PHO+MV” – MSA+BL features, pruned with
KST, recognizer utilizes phonetically-conditioned models, a
majority vote over individual utterances decides a diagnosis
label for a given speaker.

UAR DEV TEST
System DIAG TYP-TY DIAG TYP-TY
BL 52.40 92.80 67.10 90.70
MSA+BL 53.49 85.57 – –
+KST 58.98 89.28 60.24 88.66
+VTLN 59.20 88.20 – –
+KST+VTLN 62.67 94.60 – –
+KST+VTLN+MV 75.37 100.00 – –
+KST+PHO 62.29 92.97 62.74 92.41
+KST+PHO+MV 75.37 97.72 – –
+KST+VTLN+PHO 68.26 92.01 ∼ 61.65 ∼ 93.77

5. CONCLUSIONS

We have obtained an experimental confirmation that proposed
improvements to the MSA-KST speech and speaker charac-
terization system are useful. Vocal tract length normalization



allows to make the feature set more homogeneous that en-
ables better generalization from the training data. Phoneme-
synchronous capturing of the speech dynamics is a reasonable
choice for a segmental speech characterization system as it
allows comparing segmental speech dynamics in similar pho-
netic contexts. Our automated diagnostic system for autism
and dysphasia from speech is accurate given sufficient amount
of material. Analysis of 26 spoken sentences is enough to
make a nearly perfect separation of pathological speech and
achieve ∼ 75% UAR in differential diagnostics.
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