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Abstract
We present a novel toolkit that implements the long short-term
memory (LSTM) neural network concept for language model-
ing. The main goal is to provide a software which is easy to use,
and which allows fast training of standard recurrent and LSTM
neural network language models.

The toolkit obtains state-of-the-art performance on the stan-
dard Treebank corpus. To reduce the training time, BLAS and
related libraries are supported, and it is possible to evaluate mul-
tiple word sequences in parallel. In addition, arbitrary word
classes can be used to speed up the computation in case of large
vocabulary sizes.

Finally, the software allows easy integration with SRILM,
and it supports direct decoding and rescoring of HTK lattices.
The toolkit is available for download under an open source li-
cense.
Index Terms: speech recognition, language modeling, recur-
rent neural networks, long short-term memory

1. Introduction
Since their introduction in [1], neural networks have proven es-
pecially powerful for modeling the probability of a word se-
quence in natural language.

However, there are several aspects about neural network
language models that make their application to the problem of
language modeling difficult. Traditionally, a language model
(LM) estimates the joint probability of a word sequence wN
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by factorizing it as the product of word posterior probabili-
ties p(wi|wi�1

1 ). In modern speech recognition systems, the vo-
cabulary of a recognizer usually contains hundreds of thousands
of words. Then the corresponding neural network can easily
consist of hundreds of millions or more parameters, which re-
sults in a huge computational complexity for training.

It is only by exploiting several speedup techniques and by
an efficient implementation that such a neural network can be
trained within reasonable time on large data sets. Usually, this
means that it is prohibitive to use a standard neural network im-
plementation for language modeling, and a specialized software
is required.

There already exist several toolkits that can be used
for neural network language modeling, namely cslm ([3]),
nplm ([4]), and rnnlm ([5]). The first two of them implement

a feedforward neural network, and concentrate on highly effi-
cient training by using GPUs, or by giving up normalization,
respectively. Currently, with rnnlm there is only one toolkit
that supports a recurrent neural network (RNN) approach.

RNNs seem interesting from a research point of view, be-
cause it was observed that they improve over feedforward mod-
els ([6, 7, 8]). On the other hand, it was found that long-range
dependences are difficult to learn with gradient-based training
algorithms [9] in case of RNNs. To circumvent this problem, in-
stead of refining the training algorithm, in [10] a revised RNN
architecture was presented, which was subsequently improved
in [11] and [12]. This architecture is known as long short-term
memory (LSTM) neural network.

LSTMs have obtained state-of-the-art performance, espe-
cially in handwriting recognition ([13],[14],[15]), and acoustic
modeling ([16]). It seems unclear to which extent long-range
dependences play a role in language modeling. Nevertheless,
LSTMs were found to perform significantly better than RNNs
for such a task in [2] as well.

This paper presents rwthlm, a novel toolkit for language
modeling with standard recurrent and LSTM networks. The
software aims at being easy to use, and offers all features nec-
essary to train a neural network LM and use it for rescoring.

The software relies on efficient BLAS libraries, and also
allows parallelization in a way that multiple word sequences
are processed at a time. It supports word classes to reduce the
computational effort for training as well as rescoring. Word
classes can be obtained by arbitrary techniques like word fre-
quency clustering ([6]), the exchange algorithm for perplexity-
based word classes ([17, 18]), or approaches relying on neural
networks themselves ([19]).

With rwthlm, efficient Viterbi decoding of HTK lattices is
possible, including pruning and look ahead techniques known
from first pass speech decoding. More importantly, rwthlm
can also output a rescored lattice incorporating the LSTM prob-
abilities, so that later processing steps can make use of the neu-
ral network probabilities as well. With respect to lattice output,
different algorithms are available, so that a user can trade lattice
size for accuracy.

2. Recurrent Neural Network LMs
The focus of rwthlm lies on recurrent neural networks. As
such, standard RNNs as well as the improved LSTM architec-
ture are supported. In the simplest case, only a single RNN
layer is used in addition to input and output layers. The equa-



tions defining such a network are then given by
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Here, by xi�1 we denote the one-hot encoded vector repre-
sentation of the most-recent history word wi�1, and yi�1 is
the outgoing activation vector of the hidden layer. The ma-
trices A1, A2, Ac(wi) contain the weights connecting the cor-
responding neural network layers, and R is the weight matrix
for the recurrent connections. In the above formulas, we make
use of word classes, where each word from the vocabulary is
mapped to a unique class. By decomposing the word posterior
probability into the product of the class posterior probability
and the word posterior probability given its class, we can sig-
nificantly speed up the computations ([20, 21]).

By � and ', we denote the logistic sigmoid and softmax
function, respectively, applied element-wise to a vector
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where D is the dimension of x, and T indicates transposition.
More advanced architectures including LSTM layers can

be created easily. In our experiments, we obtained good results
with the architecture depicted in Fig. 1. We diverge from the
simple RNN by replacing the recurrent layer with LSTMs. Fur-
thermore, we add a so-called projection layer between the input
and hidden layer, with an identity activation function.

p
�
c(wi)|wi�1

1

�
p
�
wi|c(wi), w

i�1
1

�

class layer output layer

LSTM layer

projection layer

input layer

wi�1

Figure 1: Architecture of a recurrent LSTM neural network lan-
guage model that can be trained with rwthlm.

We did not find such a linear projection layer to have an
impact on performance for LSTMs. However, it greatly reduces
the number of parameters of the resulting neural network: An
LSTM cell has four inputs and a single output. Thus, it should
be avoided to directly connect the input layer to the LSTM layer.
Due to space restrictions, we omit the details of LSTM net-
works, and refer to [2, 16] for more details.

3. Training of Neural Network LMs
3.1. Supported Neural Network Architectures

In rwthlm, there are no restrictions on building up neural net-
works of complex architectures: Neural network layers can be

combined in arbitrary ways (except that it is not supported to
connect an LSTM layer to the input layer directly, for the rea-
sons discussed in the previous section). In particular, it is possi-
ble to build deep recurrent LSTM neural network architectures,
as proposed in [16] for acoustic modeling. The layers them-
selves can be of type feedforward, standard recurrent, or LSTM,
and different activation functions are available. Also, it can be
chosen whether a bias for the layers is used or not.

3.2. Training Algorithm Details

Recurrent neural networks are most commonly trained with
stochastic gradient descent (SGD), where the gradient is com-
puted with the backpropagation through time (BPTT) algo-
rithm ([22, 23, 24]). This method is implemented in rwthlm
as well.

Our training receipe is closely related to the situation that is
met in rescoring: First, we reset the activations which serve as
the internal memory of the neural network. Then, we compute
the gradient on a sequence of words, and we update a neural
network weight ↵ij according to the formula

↵ij := ↵ij � � · @F

@↵ij
,

where F denotes the objective function, and � is the learning
rate. In rwthlm, F is fixed to maximum likelihood, sometimes
also denoted as cross entropy.

It is often advised in neural network literature to shuffle the
training samples before each training epoch. This is not possible
in case of recurrent neural networks, as the words of a sequence
have to be processed in order. In rwthlm, the sequences are
shuffled instead.

The toolkit offers some flexibility regarding how to define
a sequence that is used for training. Three variants are distin-
guished:

1. A sequence is defined to be a sentence from the train-
ing data. As a result, sequences can be quite different in
length, especially in case of conversational speech tran-
scriptions.

2. A sequence represents the concatenation of multiple sen-
tences up to a given maximum length. In this way, the
neural network can potentially learn across-sentence de-
pendences, and each sequence starts with a sentence-
begin token.

3. A sequence consists of a fixed number of consecutive
words. This means that the text is split into sequences
at arbitrary positions. The network can learn across-
sentence dependences, and the sequence may start with
any word.

The second and third definitons of a sequence rely on a maxi-
mum sequence length that must be specified in advance. When
computing perplexities, the sequences are prepared in the exact
same way as for training.

3.3. Parallelization

For language modeling, most of the time large amounts of data
are available, and the performance of a neural network LM usu-
ally improves when training with more data. As the compu-
tational costs for training are high, parallelization is important
to speed up the training process. For this purpose, rwthlm
allows the parallel evaluation of multiple sequences. For a sim-
ple implementation, we stick to a parallelization scheme that is



mainly based on matrix-matrix operations, similar to the tech-
niques presented in [25]. To this end, the RNN and LSTM equa-
tions from [16] have to be transformed from a matrix-vector into
a matrix-matrix formulation.

The splitting of the training data into sequences interacts
with the efficiency of the parallelization. In case where all se-
quences are split such that they have the same length, paral-
lelization obviously works best. However, we found that the
difference in runtime between sequence splitting strategies is
rather small and did not exceed 20 % in the cases we consid-
ered.

3.4. Learning Rate Tuning

One of the crucial parameters of SGD training is the learning
rate �. Conceptually, a high value for � is preferable, because it
will lead to faster convergence of the tranining, but if the value
is chosen too large, perplexity will start to fluctuate.

This behaviour of the SGD learning algorithm is usually
handled by starting from a high � value, and decreasing it as
soon as a full epoch of training leads to a degradation in per-
plexity on a held-out data set.

This strategy was not effective in our case. The main ob-
servation is that the larger the gradient, the smaller the learning
rate must be to avoid fluctuations. However, the size of the gra-
dient can vary greatly depending on the length of the sequence
as well as the number of sequences that are evaluated in parallel.
For this reason, each time a good initialization for the learning
rate has to be found, which can be tedious. Following [26], we
implemented a simple algorithm that guesses an initial learning
rate: Starting from a fixed � value, we run over a small por-
tion of the training data, computing an on-the-fly average of the
training error. If the error decreases continuously, we keep the
current � as a candidate, and iterate the same process with an
increased learning rate.

The procedure of increasing the learning rate terminates as
soon as the training error starts fluctuating. If we found a can-
didate � until then, we stop and use this value for full training.
Otherwise, we continue by decreasing � until a suitable value
is found. While there is no guarantee that this strategy works in
all cases, most of the time it helps finding a good guess, and the
algorithm for finding an initial learning rate is also parameteriz-
able such that it can be adjusted to improve its reliability, at the
cost of a longer initialization phase.

4. Lattice Decoding and Rescoring
To improve the performance of a speech recognition system,
rwthlm supports decoding of n-best lists as well as word lat-
tices in HTK format. In case of lattices, the unlimited context
size of the neural network poses problems for decoding: Unless
the lattice has a prefix-tree like structure, where the sequence of
words leading to a certain lattice node is unique, multiple neu-
ral network LM probabilities correspond to a single word arc in
the lattice. For this reason, an exact decoding pass cannot be
performed in such a way that the probabilities on all the lattice
arcs are replaced by the neural network LM estimate and the
best path is obtained afterwards.

As an alternative, an approximative decoding ([27, 28])
can be performed which closely resembles the methods used
for first pass speech decoding. This approach is also imple-
mented in rwthlm. There is a need for efficient pruning
techniques during rescoring, where the following are supported
by rwthlm:

• Cardinality pruning: At each lattice node, only the best k
hypotheses are retained.

• Beam pruning: At each time step, only those hypotheses
are kept whose probability is not smaller than the current
best one, multiplied by a certain factor.

• Recombination pruning: Even though there is no fixed
context size of an RNN, we can still enforce recombi-
nation, keeping only the best hypothesis for a given LM
context of a certain order.

• Acoustic and LM look ahead: In a lattice, both the acous-
tic and (count) LM probabilities of the full word se-
quences are available. Thus, the probabilities of future
words can be incorporated into the pruning decision at
the current time step. It can be distinguished whether the
sum over all future paths or only the single best path is
considered for look ahead.

The best path obtained from direct decoding can be stored in
standard NIST format.

A unique feature of rwthlm is that it is also possible to
obtain a lattice that incorporates the neural network LM prob-
abilities. Two possible options exist: As an approximation, the
original lattice structure can be kept. Interestingly, this only
leads to a slight degradation in the Viterbi decoding result of
the rescored lattice in comparison to direct decoding. By us-
ing confusion network decoding on the rescored lattice, in all of
our experiments we obtained at least the same performance as
in case of direct decoding, or even improved.

The second option allows to write back a lattice that may
be larger than the original one. It is derived from the paths
considered during direct decoding. This lattice is guaranteed
to have the same Viterbi word error rate as would be obtained
by direct decoding. Using confusion network decoding on this
lattice gives additional improvements on top, which lie in the
same range as observed on lattices created by first pass speech
decoders. The overhead in lattice size can be tuned directly by
adjusting the pruning parameters. More details can be found
in [28].

5. Implementational Aspects
The software is implemented in C++ 11. It relies on effi-
cient mathematical libraries (Intel MKL and AMD ACML li-
braries are both supported, GPU support may be added in the
future). In addition, it uses some functions that are part of
the boost library. Both float and double precision are avail-
able, but for our experiments, we only used double precision.
However, single precision may be interesting as it speeds up
the computations by a factor of 1.6. The software is released
under the RWTH ASR License which allows free usage includ-
ing redistribution and modification for non-commercial use. It
can be downloaded from http://www-i6.informatik.

rwth-aachen.de/web/Software/rwthlm.php.
For the implementation of neural networks and especially

LSTM networks, it is helpful to verify the results that are com-
puted by the software. As noted in [29], this can be done by
comparing the gradient, as obtained by BPTT, with the sym-
metric finite difference, where we have

@F

@↵ij
=

F (↵ij + ✏)� F (↵ij � ✏)

2✏
+O(✏2)

for a constant ✏. The tests may also be helpful for developing
new extensions of rwthlm that affect the underlying mathe-
matical model.

http://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php
http://www-i6.informatik.rwth-aachen.de/web/Software/rwthlm.php


6. Experimental Results
We conducted experiments on two corpora, namely the standard
Treebank corpus and a French corpus, where we also obtained
speech recognition results. Table 1 lists the corresponding train-
ing data.

Corpus Running Words Vocabulary

Train 890 K
Treebank Dev 70 K 10 K

Test 79 K

Train 100 M
Quaero French Dev 35 K 188 K

Test 41 K

Table 1: Training data used for the experiments.

For the Treebank corpus, we only investigate the perfor-
mance of the neural networks themselves, without additional
techniques such as direct connections ([31]) or contextual fea-
tures ([32]), which could be added to both a standard RNN
as well as an LSTM. Table 2 depicts the perplexity results of
rnnlm and rwthlm. For rwthlm results, we always optimize
over the different sequence types on the development data. The
LSTM was trained with a projection layer and an LSTM layer
of size 200 each.

As rnnlm does not offer support for a projection layer, we
also trained a neural network LM with rwthlm including a
projection layer and a standard recurrent layer of the same di-
mensions. In this case, we obtained a perplexity of 122.4 which
is similar to the rnnlm result.

We also investigated a larger French corpus. Results can be
found in Table 3. The Kneser-Ney 4-gram (KN4) model was
trained on 16 times more data than the LSTM. As the vocabu-
lary size (200 K) of the KN4 model is larger than the number
of distinct words in the LSTM training data, we normalized the
LSTM perplexities to a vocabulary size of 200 K as proposed
in [8].

Corpus Mod. KN5 rnnlm

rwthlm

RNN LSTM

Dev 146.8 – 129.4 113.9
Test 140.7 124.7 122.4 108.0

Table 2: Perplexity results on the Treebank corpus for a modi-
fied Kneser-Ney-smoothed 5-gram, rnnlm and rwthlm. The
result for rnnlm is taken from [30]. The rwthlm neural net-
works include a projection layer.

The hidden layer size was set to 300 for both the projection
and the hidden LSTM layer, which is rather small in view of the
amount of training data. For the output layer, 1000 word classes
were trained based on a perplexity criterion with the exchange
algorithm [17].

By rescoring 100-best lists with rwthlm, we were able to
improve the word error rate of a French speech recognition sys-
tem from 15.9 % to 14.8 %. This system obtained the best result
in the final evaluation of the Quaero project1. More details can
be found in [28]. By rescoring lattices, we arrived at a final

1http://www.quaero.org

Type WER [%] Perplexity
Dev Test Dev Test

KN4 14.1 15.9 102.9 122.0

100-best 13.4 14.8 79.9
(98.6)

94.4
(114.9)1000-best 13.1 14.6

Lattice 12.6 14.2

Table 3: Perplexity and word error rate (WER) results for
French. Numbers in parentheses indicate LSTM perplexities
without interpolation, normalized to a 200 K vocabulary.

word error rate of 14.2 % on the test data. For all word error
rates, confusion network decoding was used.

We also analyzed the training time of rwthlm. We
switched to a subset of the French training data, compris-
ing 27 M running words, and used 2000 Brown classes. Includ-
ing parallelization over four sequences, a single epoch took 226
minutes on two 6-core Intel Westmere CPUs.

It is rather difficult to consistently compare the computa-
tional effort for training a neural network LM with rwthlm

with that of other toolkits. In case where we train an rnnlm

with the same amount of classes and the same dimension of
the hidden layer, this would take 895 minutes on the same ma-
chine, even when switching to a block mode of 10 and back-
propagating for one time step only. By contrast, in rwthlm,
the backpropagation is carried out over the full sequence and
the model is significantly more complex, so the performance
difference is surely due to the fact that rwthlm takes advan-
tage of optimized math libraries and parallelization. For this
experiment, the physical memory consumption of rwthlm was
1.2 GB vs. 2.4 GB for rnnlm.

7. Conclusion
In this work, we presented rwthlm, a novel toolkit for training
recurrent and LSTM neural network LMs.

The software allows training of arbitrary types of recur-
rent neural network LMs and in particular LSTM models, that
were found to perform significantly better than simple RNNs
on a standard language modeling task. The toolkit supports fast
BLAS libraries and also implements a parallelization scheme
where multiple sequences are forwarded through the network.

Furthermore, the processing of lattices in HTK format is
supported, where the best Viterbi path can be obtained directly,
or a rescored lattice containing the neural network LM proba-
bilities can be created instead. The toolkit is available for down-
load under an open source license.

With these features, rwthlm can help to facilitate research
in the area of neural network language modeling, building new
models and techniques on top of a solid baseline.
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