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Abstract
We present larger-scale evidence overturning pre-
vious results, showing that among the many al-
ternative phrasal lexical similarity measures based
on word vectors, the Jaccard coefficient most in-
creases the robustness of MEANT, the recently in-
troduced, fully-automatic, state-of-the-art semantic
MT evaluation metric. MEANT critically depends
on phrasal lexical similarity scores in order to au-
tomatically determine which semantic role fillers
should be aligned between reference and machine
translations. The robustness experiments were con-
ducted across various data sets following NIST Met-
ricsMaTr protocols, showing higher Kendall correla-
tion with human adequacy judgments against BLEU,
METEOR (with and without synsets), WER, PER,
TER and CDER. The Jaccard coefficient is shown
to be more discriminative and robust than cosine
similarity, the Min/Max metric with mutual infor-
mation, Jensen Shannon divergence, or the Dice’s
coefficient. We also show that with Jaccard coeffi-
cient as the phrasal lexical similarity metric, indi-
vidual word token scores are best aggregated into
phrasal segment similarity scores using the geomet-
ric mean, rather than either the arithmetic mean or
competitive linking style word alignments. Further-
more, we show empirically that a context window
size of 5 captures the optimal amount of information
for training the word vectors. The combined results
suggest a new formulation of MEANT with signifi-
cantly improved robustness across data sets.

1 Introduction
We present larger-scale evidence overturning previous re-
sults, showing that the Jaccard coefficient among the al-
ternative lexical similarity measure based on word vec-
tors most increases the robustness of MEANT, even more
than that of the Min/Max metric with mutual informa-
tion metric, as used by Lo et al. (2012) in their formu-
lation of MEANT that outperformed BLEU (Papineni et
al., 2002), NIST (Doddington, 2002), METEOR (Baner-
jee and Lavie, 2005), PER (Tillmann et al., 1997), CDER

(Leusch et al., 2006), WER (Nießen et al., 2000), and
TER (Snover et al., 2006).

MEANT, the fully-automatic, state-of-the-art semantic
MT evaluation metric as introduced by Lo et al. (2012)
uses the Min/Max metric with mutual information on
word vectors as the similarity measure to score phrasal
similarity of the semantic role fillers which is the match-
ing criterion to align semantic frames. In achieving the
same, word vectors are trained on a window size of 5 and
use arithmetic mean to aggregate token similarity scores
into segment similarity scores.

We explore the potential of alternate similarity metrics
on word vectors such as the Jensen Shannon divergence,
the Dice’s coefficient and Jaccard coefficient apart from
cosine similarity and the Min/Max metric with mutual in-
formation employed by Lo et al. (2012) in their work.
We show that Jaccard coefficient not only outperforms
the Min/Max metric with mutual information, in achiev-
ing higher Kendall correlation against human adequacy
judgments, but all the other similarity measures in com-
parison.

In order to test the robustness of the method across var-
ious data sets, we conduct experiments across GALE-A,
GALE-B and GALE-C data sets examining the Kendall
correlation against human adequacy judgments follow-
ing NIST MetricsMaTr protocols (Callison-Burch et al.,
2010). We train the weights used for computing the
weighted f-score over matching role labels using a grid
search and then test them on a combination of these data
sets and since each data set has different average sentence
length and number of sentences we identify robust met-
rics that perform across all the variations after thorough
analysis on the quality of the weights assigned to the role
labels.

The strategy used in evaluating the phrasal similarity
score from the component token similarity scores is crit-
ical in deciding the overall performance of the MEANT
metric, as role fillers are often phrases. In contrast to
the arithmetic mean and competitive linking strategies we
show that that using the geometric mean for this purpose
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is more reliable.
In order to examine the optimum amount of contex-

tual information to be captured while training the word
vectors, we vary the window size while training the word
vectors from 3 to 13. Surprisingly, we achieve both high
performance and robustness at the window size of 5 not
only for Jaccard coefficient but across almost all the met-
rics in comparison.

Our results indicate that Jaccard coefficient on word
vectors trained with a window size of 5, and using ge-
ometric mean style of aggregation as the criterion for
aligning semantic frames and significantly enhances the
performance in comparison to other metrics and robust-
ness across varying data sets of MEANT.

2 Related work

Evaluating lexical similarity of phrases plays an im-
portant role in many language technology applications
such as Machine Translation Evaluation, Word Sense dis-
ambiguation, Query Expansion, Information Retrieval,
Question Answering etc.

BLEU (Papineni et al., 2002) , NIST (Doddington,
2002), METEOR (Banerjee and Lavie, 2005), PER (Till-
mann et al., 1997), CDER (Leusch et al., 2006), WER
(Nießen et al., 2000), and TER (Snover et al., 2006), are
some of the commonly used phrasal similarity metrics.
Although lexical similarity evaluation with all the met-
rics can be done very quickly at low cost, they assume
that a good translation shares the same lexical choices as
the reference translation, which is not justified semanti-
cally.

We argue that a lexical similarity metric that reflects
meaning similarity needs to be aware of the contextual
similarity, and not merely flat lexical similarity.

3 Word vector models and similarity
metrics

Word Vector models (Dagan, 2000) are guided by the
principle that similar words occur in similar contexts. In
the word vector model, each word in the lexicon is rep-
resented by a word vector, where each entry corresponds
to the frequency of cooccurence with every other word
in the lexicon. The definition of the cooccurence rela-
tion decides the nature of the context we capture and have
been used in a wide variety of tasks, such as in word sense
disambiguation by Gale et al. (1992) by defining the re-
lation as the cooccurence within a distance of 50 words.
Grammatical and syntactic relations were also identified,
by defining the relation as the cooccurence in a relatively
shorter window of 5 words, as in the work of Smadja
(1993) and Dagan et al. (1993) . The word vector models
can be readily trained on any large mono-lingual corpora

and hence their utility is not constrained to resource rich
languages.

In this work, we make a choice of defining the cooc-
curence relation as the joint cooccurence of the word
within a short window of text, by the principle of oc-
cam’s razor. A window size of n symmetrically encom-
passes word tokens at a distance of upto (n−1)

2 on both
directions and hence captures not only semantic context,
but but also a mixture of grammatical and topical cooc-
curences. We make a choice of not using any techniques
such as stemming, lemmatisation or stop-word pruning
as using such limit the use of the word vector models to
only some languages.

The trained word vectors can be used with a variety
of mathematical measures of similarity between a pair of
vectors to evaluate the degree of similarity of the words
that they represent. We use a diverse set of such func-
tions, each quantifying a different aspect of the accumu-
lated cooccurence statistics between a pair of vectors.

3.1 Cosine Similarity
Cosine measure gives the cosine of the angle between the
two vectors and is commonly used in the vector space
model. Since the word vectors have non-negative com-
ponents, the range is between 0 and 1, where a value of
0 indicates that the vectors are orthogonal or dissimilary
and a value of 1 indicates that the vectors are parallel or
similar. The cosine similarity between two tokens x and
y is defined as follows:

−→wx = context vector of word token x

wxi = attribute i of context vector −→wx

f(x,wxi) =
c(x,wxi)

Σ
j
c(x,wxj)

cosine(x, y) =
Σ
i
f(x,wxi)× f(y, wyi)

√
Σ
i
f(x,wxi)

2
√

Σ
i
f(y, wyi)

2

3.2 Min/Max metric with Mutual Information
Using the above given definition of wxi, the min/max
with mutual information (Cover and Thomas, 1991) sim-
ilarity between two sequences of two tokens, x and y is
defined as follows:

P (wxi | x) =
c(x,wxi)∑
j c(x,wxj)

P (wxi) =

∑
y c(y, wxi)∑

y

∑
j c(y, wxj)

MI(x,wxi) = log

(
P (wxi | x)

P (wxi)

)
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MinMax-MI(x, y) =
Σ
i

min (MI(x,wxi),MI(y, wyi ))

Σ
i

max (MI(x,wxi),MI(y, wyi ))

The range of Min/Max metric with Mutual Informa-
tion is 0 to 1, a value of 0 indicates that the vectors are
completely dissimilar and a value of 1 indicated that they
are identical.

3.3 Jensen Shannon Divergence
Using the above given definitions of wxi, the Jesen Shan-
non divergence (Lin, 1991), (Rao, 1982) is defined as fol-
lows:

D(x || x + y

2
) = Σ

i
P (wxi | x)log

(
2× P (wxi | x)

P (wxi | x) + P (wyi | y)

)

JSD(x, y) = D(x || x + y

2
) + D(y || x + y

2
)

Here, D(x || y) represents the Kullback-Leibler Di-
vergence (Cover and Thomas, 1991). The Jensen Shan-
non divergence addresses the problem of assymetry as-
sosiated with KL divergence, and has a range of 0 to 1.
The square root of Jensen Shannon Divergence is a met-
ric, also with a range of 0 to 1, but since it is divergence
metric, a value of 0 indicates that the vectors of x and y
are similar and a value of 1 indicates that they are orthog-
onal.

3.4 Dice’s coefficient
Dice’s coefficient for two words x and y is defined as
the ratio of total number of shared cooccurences of their
vectors to the total number of cooccurences in both the
vectors. It is formulated as follows:

DC(x, y) =
Σ
i

min (c(x,wxi), c(y, wyi ))

Σ
i

(c(x,wxi) + c(y, wyi ))

where the definitions of wxi and c(x,wxi)are the same
as above. Here, min(a, b)represents the minimum of the
values a, b. The range of Dice’s coefficient is 0 to 1, a
value of 0 indicates that the vectors are completely dis-
similar and a value of 1 indicated that they are identical.

3.5 Jaccard coefficient
The Jaccard coefficient for two words x and y is defined
as the ratio of intersection of their cooccurences to the
union of their cooccurences of their word vectors.

JC(x, y) =
Σ
i

min (c(x,wxi), c(y, wyi ))

Σ
i

max (c(x,wxi), c(y, wyi ))

where the definitions of wxi
, c(x,wxi

) and min(a, b)
are the same as above. Here, max(a, b) represents the
maximum of the values a, b

The range of Jaccard coefficient is 0 to 1, a value of 0
indicates that the vectors are completely dissimilar and a
value of 1 indicated that they are identical.

4 Computing phrasal similarity
In this section, we define the methods used in comput-
ing the similarity of two phrases given the degree of
similarity of the component tokens. Evaluating phrasal
similarity in the context of word vectors is a challenge,
as we have no information about the alignment of the
token pairs in the given phrases.The strategy employed
must provide sufficient discriminatory power in order for
MEANT to align the one pair of similar role fillers among
many such pairs with mismatched lengths and word or-
dering. We now discuss the methods we use in computing
the phrasal similarity scores from the component token
similarity scores.

4.1 Arithmetic Mean
In this method, we simply assume that there is a complete
alignment between the two phrases. We then compute the
phrasal similarity score as the mean of similarity scores
of all the component token pairs. The phrasal similarity
between two sequences of word tokens−→u and−→v using the
arithmetic mean method is defined as:

AM(−→u ,−→v ) =
1

t× s
Σ
i
Σ
j
S(ui, vj)

where t is the number of word tokens in −→u and s is
the number of word tokens in −→v . S(ui, vj) is the token
similarity score of the ith token in −→u and the jth token
in −→v obtained using any of the above mentioned token
similarity metrics.

4.2 Geometric Mean
In this method, again, we assume that there a complete
alignment between the two phrases. We then compute the
phrasal similarity score as the geometric mean of similar-
ity scores of all the component token pairs. The phrasal
similarity between two sequences of word tokens −→u and−→v using the geometric mean method is defined as:

GM(−→u ,−→v ) = e
1

(t×s)
Σ
j
Σ
i
ln(S(ui,vj))

where t is the number of word tokens in −→u and s is
the number of word tokens in −→v . S(ui, vj)is the token
similarity score of the ithtoken in −→u and the jth token
in −→v obtained using any of the above mentioned token
similarity metrics.

4.3 Modified Competitive Linking
In this method we attempt to align the tokens in the
phrases using the similarity score of the token pair as a
heuristic. As in the previous methods, we avoid the dan-
ger of aligning a token in one segment to excessive num-
bers of tokens in the other segment, by adopting a variant
of competitive linking by Melamed (1996). The compet-
itive linking algorithm adopts a greedy best first strategy

576



in making strictly one to one word alignments. Since we
frequently encounter phrases for alignment with unequal
lengths, this one to one constraint severely restricts align-
ments and so we modify the competitive linking strategy
by allowing one to many alignments. The number of such
one to many alignments must be equal to the difference
in the segment lengths. Once these alignments have been
made, we compute the similarity of the two phrases as the
arithmetic mean of the similarity scores of the aligned to-
kens.

5 Jaccard coefficient outperforms other
metrics

We show that the Jaccard coefficient outperforms other
similarity metrics as the criterion for evaluating lexical
similarity to align role fillers in MEANT.

5.1 Experimental Setup

We report the performance of all the similarity met-
rics - cosine similarity, Min/Max with mutual informa-
tion, Jensen Shannon divergence, Jaccard coefficient and
the Dice’s coefficient on the word vector models as de-
scribed above as criterion for aligning semantic frames in
MEANT.

We train the word vector models on the uncased Giga-
word corpus. We do not use techniqes such as stemming,
lemmatisation or stop-word pruning. We train the word
vectors on the Gigaword corpus with window sizes rang-
ing from 3 to 13.

For our benchmark comparison, the evaluation data
for our experiments is the same two sets of sentences,
GALE-A and GALE-B that were used in Lo and Wu
(2011), where in GALE-A is used for estimating the
weight parameters of the metric by optimizing the cor-
relation with human adequacy judgment, and then the
learned weights are applied to testing on GALE-B. For
the automatic semantic role labeling, we used the pub-
licly available off-the-shelf shallow semantic parser, AS-
SERT (Pradhan et al., 2004). Semantic frame align-
ment is done by applying maximum bipartite matching
algorithm with the lexical similrity of predicates as edge
weights. The correlation with human adequacy judg-
ments on sentence-level system ranking is assessed by the
standard NIST MetricsMaTr procedure (Callison-Burch
et al., 2010) using Kendall correlation coefficients.

We first run a grid search on the GALE-A data set
for each of these metrics on all window sizes to obtain
weights for the role labels. We then use these weights
to evaluate the GALE-C data set. The Kendall correla-
tion score is obtained using MEANT as described in Lo
Wu 2012. In this experiment, we use geometric mean
as the aggregation method and vary the window sizes for
each metric to first identify one metric that performs ro-

bustly across all window sizes for the given dataset. We
also examine the distribution of weights over the seman-
tic role labels across all the window sizes to verify that
the metric is both: performing consistently and produc-
ing the excpected distribution of weights over semantic
role labels.

5.2 Results

Table 1 shows that the Jaccard coefficient performs con-
sistently well and relatively out performs most other sim-
ilarity metrics in comparision. It is surprising that the
performance of all the metrics does not improve signifi-
cantly and sometimes, decreases with increasing window
size. For a window size of 5 for the Jaccard coefficient,
we achieve close to 0.21 Kendall for testing on GALE-B,
outperforming the scores reported on the same data sets
MEANT in Lo et al. (2012). A kendall of 0.26 and 0.22
are observed for Dice’s coefficient with window sizes of 3
and 11. On a closer look at the weights assigned to each
role labels after training on GALE A, we observe that
the weights in these cases have been abnormally chosen
in the favour of matching role fillers with less important
role labels, but on the contarary, in the case of Jaccard co-
efficient they have been distributed with relatively higher
importance for predicate, agr0, arg1 and arg2 across all
window sizes indicating that it is enabling the alignment
of more important roles accurately.

6 Phrasal similarity best computed
through geometric mean

We show that the Geometric mean method of aggrega-
tion out performs the arithmetic and competitive linking
methods using Jaccard coefficient

6.1 Experimental Setup

We report the performance of the arithmetic mean and
competitive linking methods of aggregation using Jaccard
coefficient as the lexical similarity measure. These sim-
ilarity metrics are employed on word vectors trained on
the Gigaword corpus with window sizes ranging from 3
to 13. The evaluation data for our experiment is the same
as described above.

6.2 Results

In tables 2 and 3, we observe that the geometric mean
method of aggregation outperforms arithmetic mean and
competitive linking methods of aggregation. Although
we see markedly higher kendall scores with training
on the GALE-A data set using the modified competi-
tive linking method of aggregation, the resultant weights
that yield such high scores are not only improperly dis-
tributed, but also perform poorly when tested on the
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Table 1: Kendall correlation scores with human adequacy judgment on GALE-A (training) and GALE-B (testing) comparing
MEANT integrated with various lexical similarity measures as criterion for aligning semantic role fillers: (a) cosine similarity,
(b) Min/Max with mutual information (c) Jensen Shannon divergence (d) Jaccard coefficient and (e) Dice’s coefficient with word
vectors trained from window sizes 3-13 and using geometric mean as the aggregation method

Training on GALE A Testing on GALE B
window size 3 0.2702 0.2095
window size 5 0.3783 0.1523
window size 7 0.3783 0.1142
window size 9 0.3153 0.0857
window size 11 0.2972 0.180
window size 13 0.3603 0.1523
Min/Max with MI
window size 3 0.3603 0.1333
window size 5 0.3603 0.1523
window size 7 0.2252 0.1714
window size 9 0.3333 0.2476
window size 11 0.2882 0.1523
window size 13 0.2522 0.1142
JSD
window size 3 0.3963 0
window size 5 0.3603 0
window size 7 0.3423 0
window size 9 0.3603 0
window size 11 0.3243 0.0952
window size 13 0.3603 0.1428
Jaccard Coefficient
window size 3 0.3783 0.1904
window size 5 0.3333 0.2095
window size 7 0.3423 0.2000
window size 9 0.3423 0.1809
window size 11 0.3513 0.0952
window size 13 0.3513 0.1142
Dice’s Coefficient
window size 3 0.3603 0.2666
window size 5 0.3603 0.1809
window size 7 0.3513 0.1904
window size 9 0.3693 0.1714
window size 11 0.3693 0.2285
window size 13 0.3603 0.1714

Table 2: Sentence-level correlation with human adequacy judgment on GALE-A (training) and GALE-B (testing) comparing
MEANT integrated with Jaccard coefficient as measure of lexical similarity on word vectors trained on window sizes 3-13 between
semantic role fillers using arithmetic mean as the aggregation method

Training on GALE A Testing on GALE B
Jaccard Coefficient
window size 3 0.3603 0.1523
window size 5 0.3333 0.2000
window size 7 0.3603 0.1809
window size 9 0.3603 0.1619
window size 11 0.3603 0.2380
window size 13 0.3603 0.2095
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Table 3: Kendall correlation scores with human adequacy judgment on GALE-A (training) and GALE-B (testing) comparing
MEANT integrated with Jaccard coefficient as measure of lexical similarity on word vectors trained with window sizes 3-13
between semantic role fillers using Competitive linking as the aggregation method

Training on GALE A Testing on GALE B
Jaccard coefficient
window size 3 0.3873 0.1714
window size 5 0.3963 0.1904
window size 7 0.3783 0.1333
window size 9 0.3783 0.0952
window size 11 0.3693 0.0761
window size 13 0.3693 0.0952

Table 4: Kendall correlation scores with human adequacy judgment and the corresponding role label weights on GALE-C as the
training set and GALE-A as the testing set with MEANT integrated with Jaccard coefficient as measure of lexical similarity between
semantic role fillers with word vectors trained on window sizes 3-13 and using Geometric Mean as the aggregation method. The
role labels are pr - predicate, a0 - arg0, a1 - arg1, a2 - arg2, te - temporal, lo - locative, pu - purpose, ex - extent, ma - manner, o -
other, m - model, n - negation

Jaccard Coefficient GALE C GALE A pr a0 a1 a2 te lo pu ex ma o m n
window size 3 0.1443 0.1981 2 3 1 0 2 0 2 0 0 0 0 2
window size 5 0.1520 0.3243 5 3 0 0 1 0 0 1 0 1 0 1
window size 7 0.1505 0.1351 0 4 4 0 0 0 3 0 0 0 0 1
window size 9 0.1520 0.1441 1 2 0 0 3 0 1 0 0 2 0 3
window size 11 0.1505 0.1441 1 2 0 0 3 0 1 0 0 2 0 3
window size 13 0.1566 0.1441 1 2 0 0 3 0 1 0 0 2 0 3

GALE-B data set. Other variants of the competitive link-
ing method of similar nature may also be expected to suf-
fer from this problem of overfitting.

The arithmetic mean method performs extremely well
in the case of higher window sizes - 11 and 13 in this pir-
ticular case, where we use GALE-A as the train data set
and GALE-B as the test dataset, but does not perform as
well as the geometric mean over relatively larger datasets
as in the case of training with GALE-C and testing on
GALE-A and GALE-B, where we observe negative cor-
relation scores.

It has been observed, the method in which we com-
pute the phrasal similarity scores from the component to-
ken similarity scores of the role fillers impacts the overall
performance at two levels - (1) In effectively handling
different lengths of phrases and (2) In the distribution of
weights on the roles. By out-performing arithmetic mean
and competitive linking, the geometric mean method of
aggregation as seen in table 1 has proven to handle both
the factors robustly.

7 Jaccard coefficient is robust across
various data sets

Given the positive results on the above mentioned data
sets, we ask : Does Jaccard coefficient perform robustly
across various data sets? The concerns with varying data

sets is two fold: (1) Does Jaccard coefficient as a metric
have enough discriminatory power? (2) Is the Jaccard
coefficient enabling consistent distribution of weights to
role labels during training.

7.1 Experimental Setup

We follow a similar setup as laid out in the previous
experiments, except for our benchmark comparison, the
evaluation data for our experiments we use GALE-A,
GALE-B and GALE-C as used in that were used in Lo
and Wu (2011), where in GALE-C is used for estimat-
ing the weight parameters of the metric by optimizing the
correlation with human adequacy judgment, and then the
learned weights are applied to testing on both GALE-A
and GALE-B.

7.2 Results

In tables 4 and 5, we observe that Jaccard coefficient
still performs very well on varying the training and test-
ing data sets, achieving scores of 0.15, 0.32 and 0.26
on GALE-C (training), GALE-A (testing) and GALE-B
(testing) respectively. This indicates robustness of Jac-
card coefficient as a lexical metric and its reliability for
using it across any new data sets.
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Table 5: Kendall correlation scores with human adequacy judgment and the corresponding role label weights on GALE-C as the
training set and GALE-B as the testing set with MEANT integrated with Jaccard coefficient as measure of lexical similarity between
semantic role fillers with word vectors trained on window sizes 3-13 and using Geometric Mean as the aggregation method. The
role labels are pr - predicate, a0 - arg0, a1 - arg1, a2 - arg2, te - temporal, lo - locative, pu - purpose, ex - extent, ma - manner, o -
other, m - model, n - negation

Jaccard Coefficeint GALE C GALE B pr a0 a1 a2 te lo pu ex ma o m n
window size 3 0.1443 0.1333 2 3 1 0 2 0 2 0 0 0 0 1
window size 5 0.1520 0.2666 5 3 0 0 1 0 0 1 0 1 0 1
window size 7 0.1505 0.0476 0 4 4 0 0 0 3 0 0 0 0 1
window size 9 0.1520 0.1904 1 2 0 0 3 0 0 0 0 2 0 4
window size 11 0.1505 0.1523 1 2 0 0 3 0 1 0 0 2 0 3
window size 13 0.1566 0.1714 1 2 0 0 3 0 0 0 0 2 0 4

7.3 What is the optimal window size?

A closer analysis at the weights assigned to the role la-
bels on training with Jaccard coefficient across all win-
dow sizes using the geometric mean method of aggrega-
tion shows that evaluating with word vectors trained on a
window size of 5 gives relatively higher importance by by
concentrating the weight mass over the more important
role labels. This has been observed even for the experi-
ments with a different data set - by training on GALE-
A and testing on GALE-B. We also observe relatively
higher scores consistent with the weighing scheme, using
this combination for all the data sets. Jaccard coefficient
with word vectors trained on a window size of 5, using
the geometric mean method of evaluating phrasal simi-
larity out performs all the other methods and robustly so
across various data sets.

8 Conclusion

We have shown through a broad range of comparative ex-
periments that Jaccard coefficient as a phrasal lexical sim-
ilarity metric within MEANT out performs all the other
metrics and most importantly than that of the Min/Max
with mutual information metric, as used by Lo et al.
(2012) in thier formulation of MEANT that outperformed
BLEU, METEOR, WER, PER, CDER and TER.

We have also shown that using a window size of 5 the
word vectors is optimal to train the word vectors after an-
alyzing the performance of Jaccard coefficent across win-
dow sizes 3 to 13. Jaccard coefficient is shown to be more
discriminative using the geometric mean method of ag-
gregation over the arithmetic mean and competitive link-
ing methods. Through experiments across across various
data sets Jaccard coeffficient as a lexical similarity met-
ric is shown to be robust and consistently yielding high
performance.

By incorporating Jaccard coefficient as the lexical sim-
ilarity metric, we except that the new formulation of the
MEANT metric would show improved performance and
robustness.
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