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ABSTRACT
Research on language modeling for speech recognition

has increasingly focused on the application of neural net-
works. Two competing concepts have been developed: On
the one hand, feedforward neural networks representing an n-
gram approach, on the other hand recurrent neural networks
that may learn context dependencies spanning more than a
fixed number of predecessor words.

To the best of our knowledge, no comparison has been
carried out between feedforward and state-of-the-art recur-
rent networks when applied to speech recognition. This paper
analyzes this aspect in detail on a well-tuned French speech
recognition task. In addition, we propose a simple and ef-
ficient method to normalize language model probabilities
across different vocabularies, and we show how to speed up
training of recurrent neural networks by parallelization.

Index Terms— Automatic speech recognition, feedfor-
ward neural networks, recurrent neural networks

1. INTRODUCTION

Apart from the acoustic signal, today’s speech recognition
systems also make use of prior knowledge about the under-
lying human language. Such information is usually incor-
porated in the form of a probabilistic language model (LM)
which assigns non-zero probabilties to arbitrary word se-
quences wN

1 . By assigning higher probabilities p(wN
1 ) to

word sequences more commonly found in a natural language,
a speech recognizer can identify those words that have most
likely been spoken.

For state-of-the-art systems, usually a set of hypotheses
for the spoken word sequence is generated using a backing-
off language model ([1]). In a rescoring step, additional
techniques are applied to obtain more accurate estimates
for p(wN

1 ) on this limited set of hypotheses only. Based on
the updated language model probabilities, the final recogni-
tion result is obtained.

Large improvements have been reported when applying
neural network language models (NNLMs) [2] during rescor-

∗Now with LNE, the French National Metrology and Testing Laboratory.

ing (see e. g. [3], [4], and [5]). However, there are fundamen-
tal differences in the way neural networks have previously
been applied to speech recognition tasks.

When a feedforward neural network (FFNN) is used, only
the direct (n− 1) predecessor words wi−1

i−n+1 are used to pre-
dict the probability of the current word wi. Although it is
possible to include words from the previous sentence, most
of the time the history is trunacted at the beginning of the
sentence in the n-gram approach. When a recurrent neural
network is used, the full sequence of predecessor words wi−1

1

is considered for predicting wi, see [5].
On the other hand, it is not possible to apply recurrent

neural networks to the rescoring of standard word lattices. In-
stead, only a subset of the hypotheses encoded in a word lat-
tice can be considered and needs to be converted into a linear,
non-branching format denoted as m-best list.

Furthermore, recurrent models cannot be consistently
evaluated in rescoring: A speech recognizer only gives multi-
ple hypotheses for a single sentence-like portion of the speech
signal. To cover context lengths spanning e. g. two consecu-
tive sentences, any two hypotheses for the two sentences have
to be concatenated and rescored with the recurrent NNLM.
For larger m-best lists and longer contexts, such an approach
is computationally infeasible. As a result, in practice only the
best scoring hypothesis of a sentence is used when rescoring
the following sentence. Eventually, the perplexities computed
with recurrent models may not fully reflect the corresponding
performance in terms of word error rate (WER) because when
computing perplexities, the problem of exponential growth of
the hypothesis space does not exist, and the recurrent model
can be evaluated in an exact manner.

For these reasons, it seems interesting to compare both
approaches in more detail. In this work, we want to find out
whether the increased complexity of recurrent models com-
pared to feedforward networks pays off in performance.

2. RELATION TO PRIOR WORK

In recent works, the comparison of feedforward and recur-
rent neural networks has already been investigated to some
extent. First experiments along this direction were presented
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in [6], where a recurrent NNLM attained a significantly lower
perplexity than a feedforward network trained on one million
running words of Wall Street Journal (WSJ) data.

In [7], deep feedforward NNLMs were analyzed. In ad-
dition, they were also compared to recurrent networks on a
selection of WSJ training data consisting of about 24 million
running words. Again, the recurrent network obtained con-
sistently lower perplexities than the feedforward architecture.
However, for the recurrent network, the full vocabulary was
used whereas the feedforward network was trained on a short-
list vocabulary only. Therefore, it is not obvious whether the
improvements stem from the network architecture itself or the
use of all vocabulary words (which was shown to be beneficial
in [8]).

Contrasting these results, in [9] a 10-gram feedforward
NNLM performed even slightly better in perplexity than a re-
current network on a large-scale English to French translation
task. Performance in terms of BLEU was identical for both
network architectures. Here, the recurrent model was inte-
grated into a feedforward training scheme by applying several
approximations to speed up the training procedure.

To the best of our knowledge, no comparative analysis has
been carried out that takes into account the impact of neural
network LMs on speech recognition performance. On the
other hand, it is well known that improvements in perplex-
ity do not necessarily carry over to improvements in WER,
see e. g. [10]. Furthermore, no prior work has compared
feedforward networks to recurrent Long Short-Term Memory
(LSTM) NNLMs that were shown to improve over standard
recurrent NNLMs in [5]. In this paper, we address these open
issues.

3. NEURAL NETWORK LANGUAGE MODELS

As an example for the feedforward NNLM architecture used
here, a trigram NNLM is depicted in Fig. 1. At the input layer,
the predecessor words u and v are fed into the network, where
the words are represented as 1-of-V encoding for a vocabu-
lary size V . The values of the nodes x(`) of a layer ` are given
by the equation

x(`) = f
(
W (`)x(`−1) + b(`)

)
for a weight matrix W (`), a bias b(`), and an activation func-
tion f . For the projection layer, most of the time f is set to the
identity function. For the hidden layer, the sigmoid function
is used, and for the output layer, f is set to the softmax func-
tion to obtain correctly normalized probabilities. The weight
matrix between the input and the projection layer is tied for
all history words.

For the comparative analysis in this work, we stick to
two variants of this NNLM topology: (1) shortlist feedfor-
ward NNLMs, where the output layer is limited to the most-
frequent words only, and (2) clustered feedforward NNLMs,
where the full vocabulary is used at the output layer. In this

projection layer

hidden layer

input layer

output layer

p(w|u,v)

u v
0 0 001 1

Fig. 1. Architecture of a feedforward NNLM.

case, each word is attributed to a unique class, and instead of
directly predicting the probability of a word, this quantity is
factorized into two individual terms:

p(w|u, v) = p (w|c(w);u, v) · p (c(w)|u, v) .
Here, first the class c(w) of the word w is predicted, and then,
given the class c(w) and the predecessor words u, v, the prob-
ability of the next word is derived. As only a limited number
of words occurs in a given class, and the number of word
classes can be chosen to be much smaller than the vocabu-
lary size, substantial speed-ups in training can be achieved by
applying this equation, see [11] and [12].

Recurrent neural networks follow a similar topology, but
as input they only receive the direct predecessor word, and the
hidden layer contains recurrent connections, thereby implic-
itly taking into account multiple predecessor words that were
presented to the network before. In this work, we use the
more advanced LSTM node type for the hidden layer. Details
on LSTM NNLMs can be found in [5].

3.1. Parallelization

For any kind of NNLM, the computational costs for training
are considerable.

Therefore, the training computations are split between
several CPU cores that independently generate intermediate
results. In case of feedforward NNLMs, a fixed number of
n-grams from the training data is propagated through the
network without updating its weights. The number of train-
ing samples is referred to as bunch size, and, for language
modeling, reasonable values may e. g. lie between 2 and 128
([13]).

This approach is not directly transferrable to recurrent
NNLMs because there is no fixed context length and, thus,
the probabilities of subsequent words in a sentence are all
interdependent. Nevertheless, a similar idea can be applied to
the case of recurrent neural networks. Instead of parallelizing
over a set of individual words from a sentence, the bunch can
be defined to contain full sentences. As a result, each core
calculates the gradient with respect to a single sentence while
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the weights are kept fixed. Afterwards, the gradients for the
individual sentences are accumulated and the result is used
for updating the weight parameters.

The standard approach would be for each CPU core to
maintain its individual gradient vector, and to add up the gra-
dient vectors one by one (or pair-wise in a recursive fashion,
if this step shall be parallelized, too) after processing all ele-
ments from the bunch.

One of the principal problems of bunch mode paralleliza-
tion lies in the interaction with the clustering speed-up tech-
nique. The basic concept of the clustering approach is that
only a small portion of the weight matrix is needed for cal-
culating probabilities. Consequently, only a small number of
components of the gradient has to be computed, and it would
be inefficient to consider the full gradient matrix.

We resolve this problem by keeping track of all word
classes that were observed within a given training sequence.
When updating the weight parameters, only those weights
need to be modified that correspond to words belonging to
one of the previously seen classes. The weights related to the
class posterior probability p

(
c(w)|h

)
, given the preceding

history words h, need to be updated in all cases.
Using four CPU cores, we were able to reduce the training

time down to 60 % of the original single-threaded version.

3.2. Probability Normalization

In many practical applications, an NNLM cannot be trained
on the full set of vocabulary words. For shortlist NNLMs, by
definition only the most frequent words are covered.

Even for clustered NNLMs, usually not all vocabulary
words can be predicted. The reason is that normally, the
NNLM is interpolated with a backing-off model. Such a
model can easily be trained on data sizes that are too large for
NNLM training, especially when the NNLM architecture is
more complex. This leads to the case where the backing-off
model has seen relevant words in training that did not occur
in the reduced subset of NNLM training data at all.

In [13] it was proposed to compute normalized NNLM
probabilities p̃NN according to

p̃NN(w|h) =

{
γ(h)pNN(w|h) w ∈ VNN

pBO(w|h) otherwise

for an NNLM vocabulary VNN, NNLM probabilities pNN,
and for backing-off probabilities pBO. The normalization
term γ(h) is obtained by summing up the backing-off LM
probabilities over all words from the shortlist vocabulary.

The disadvantage of this method is that the computation
of the sum over all shortlist OOV words requires a lot of com-
putation time, especially when the backing-off model is large.
Furthermore, no stand-alone perplexity can be computed for
the NNLM as an additional backing-off model is needed, too.
Nevertheless this approach is widely used in practice. Fur-
ther normalization variants suffering from at least one of these
problems are listed in [14].

As an alternative, an NNLM can be trained on the vocabu-
lary VNN∪{〈unk〉}, where 〈unk〉 denotes the unknown word
token. We then propose to obtain probabilities p̃NN for the
full backing-off vocabulary VBO ⊃ VNN by setting

p̃NN(w|h) =

pNN(w|h) w ∈ VNN

pNN(〈unk〉|h)
|VBO \ VNN|+ 1

otherwise.

In this way, extending the NNLM probabilities to the full
vocabulary can be done at virtually no computational extra
costs. At the same time, zero probabilities can be avoided
which is also interesting for comparing perplexities between
different LMs. In addition, no dependence on the backing-off
model itself is introduced.

4. EXPERIMENTAL RESULTS

The experimental comparison of different NNLM architec-
tures presented in this work is based on the five state-of-
the-art French speech recognition systems of RWTH that
were trained for the 2012 evaluation of the Quaero research
project1. These obtained the best results among those systems
evaluated on this task.

The amount of acoustic training data comprised 350 hours
of manually transcribed broadcast news and broadcast conver-
sational speech. The baseline backing-off LM was trained on
1.6 billion running words for a vocabulary of size 200 K us-
ing Kneser-Ney smoothing [1]. The resulting speech recogni-
tion systems included state-of-the-art techniques like speaker
adaptation, cross adaptation, Multi-Layer Perceptron (MLP)
Tandem features and discriminative training (or a hybrid MLP
acoustic model instead). By applying Confusion Network
Combination (CNC, cf. [15]), all five systems were combined
to further improve the recognition result.

Throughout this paper, three different NNLM implemen-
tations were used: The LIMSI shortlist feedforward NNLM
software, the RWTH clustered feedforward NNLM and the
RWTH clustered recurrent LSTM NNLM implementation.
For NNLM training, compared to the backing-off model only
a limited amount of training data could be used which com-
prised a subset of 27 M running words of in-domain data.
From the original 200 K vocabulary words of the backing-
off LM, 180 K words were seen in the reduced NNLM data
set. Based on relative frequencies, 200 classes were pre-
computed for the clustering of the NNLMs. The hidden layer
sizes varied between 300 and 500 nodes, depending on the
performance on the development data.

Perplexity results of baseline and neural network models
are depicted in Table 1. We observe that in particular the
LSTM achieves perplexities similar to those of the backing-
off model, even though the LSTM was trained on much less
data. Using a combination of two LSTMs, the backing-off
model is even outperformed on the test data.

1http://www.quaero.org
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The context-length of the FFNN was increased until
no further improvement was observed, resulting in 8-gram
NNLMs of perplexity 146.9 on the test set. In spite of the
long context size of the FFNN, the LSTM perplexities were
lower by 15 to 17 % relative compared to the feedforward ar-
chitecture. Improvements by interpolating additional NNLMs
are rather small when a large backing-off model has already
been included for interpolation.

BO FFNN LSTM Perplexity
LM1 LM2 LM1 LM2 dev12 test12

• · · · · 102.9 122.0

· • · · · 137.3 146.9
· • • · · 130.8 139.4
• • · · · 92.8 106.9
• • • · · 91.9 105.5

· · · • · 113.8 124.6
· · · • • 106.2 116.3
• · · • · 84.4 97.4
• · · • • 82.8 95.2

Table 1. Perplexity results of the RWTH NNLMs for the
Quaero French 2012 corpora.

Table 2 shows WER results for the same task. All NNLMs
were interpolated with the baseline backing-off model. On
100-best lists, an 8-gram FFNN was used, while on lattices
only a 4-gram FFNN was applied due to lattice expansion
which becomes difficult for long context-sizes. (On the test
data, the clustered 4-gram NNLM achieves a perplexity which
is larger by 4 points compared to the 8-gram from Table 1.)

We find that huge gains of 1.4 % absolute on the devel-
opment and 1.3 % absolute on the test data can be obtained
with LSTMs on top of our single-best baseline system with
a backing-off LM and Viterbi decoding. It should be noted
that the LSTM results may be slightly improved by a more
accurate rescoring procedure. During rescoring, the LSTM
history is not reset when shifting from one audio recording to
another. Besides, the context-length is limited to eight con-
secutive sentences. The rescoring could be carried out such
that a sliding window of eight sentences is moved over the
development or test data. Instead, we use non-overlapping
windows of eight sentences to simplify the rescoring process.
On the other hand, preliminary experiments showed that, by
taking both aspects into account, the WER can just be im-
proved by 0.1 % absolute.

We see that none of the feedforward NNLMs performs as
well as the recurrent networks. On the test data, LSTM net-
works improve by 0.4 % absolute over feedforward NNLMs,
even after system combination. Interestingly, all FFNNs per-
form similarly after system combination: When rescoring on
100-best lists with longer context sizes, the gains after Viterbi
decoding are larger compared to the lattice version, but the
system combination on lattices gives larger improvements

LM Type Hypoth. Decoding
WER

dev12 test12

Backing-off lattices Viterbi 1x 15.6 % 17.4 %
CNC 5x 14.5 % 16.7 %

+1x short- lattices Viterbi 1x 15.1 % 17.1 %
list FFNN CNC 5x 14.2 % 16.2 %

+1x FFNN
100-best Viterbi 1x 14.6 % 16.8 %

CNC 5x 14.2 % 16.4 %

lattices Viterbi 1x 15.0 % 16.9 %
CNC 5x 14.1 % 16.2 %

+2x FFNN
100-best Viterbi 1x 14.6 % 16.7 %

CNC 5x 14.1 % 16.3 %

lattices Viterbi 1x 14.9 % 16.9 %
CNC 5x 14.1 % 16.2 %

+1x LSTM 100-best Viterbi 1x 14.4 % 16.3 %
CNC 5x 13.9 % 16.0 %

+2x LSTM 100-best Viterbi 1x 14.2 % 16.1 %
CNC 5x 13.8 % 15.8 %

Table 2. WER results on the Quaero French 2012 develop-
ment and test corpora.

than on 100-best lists, so both approaches end up the same.
Similar observations can be made when using Confusion
Network Decoding for a single system.

5. CONCLUSION

In this work, we compared feedforward and recurrent NNLMs
on a French speech recognition task. We found that recur-
rent neural networks outperformed standard feedforward
approaches on these data.

From the results obtained we also conclude that standard
speech recognition technology somehow limits the possible
improvements that can be obtained from applying recurrent
NNLMs: Confusion Network based techniques give addi-
tional gains in WER, but favor lattices overm-best lists which
themselves are the basis of any recurrent NNLM rescoring
approach. Therefore it may be worthwhile to further investi-
gate how to improve decoding on m-best lists (or conversely,
converting m-best lists back to a lattice-like format).

Furthermore, for future work, it will be interesting to com-
bine feedforward and recurrent NNLM architectures to see to
which extent their improvements over baseline models are ad-
ditive in WER.
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