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Abstract
Standard phrase-based statistical machine translation systems generate translations based

on an inventory of continuous bilingual phrases. In this work, we extend a phrase-based de-
coder with the ability to make use of phrases that are discontinuous in the source part.

Our dynamic programming beam search algorithm supports separate pruning of coverage
hypotheses per cardinality and of lexical hypotheses per coverage, as well as coverage con-
straints that impose restrictions on the possible reorderings. In addition to investigating these
aspects, which are related to the decoding procedure, we also concentrate our attention on the
question of how to obtain source-side discontinuous phrases from parallel training data. Two
approaches (hierarchical and discontinuous extraction) are presented and compared.

On a large-scale Chinese→English translation task, we conduct a thorough empirical eval-
uation in order to study a number of system configurations with source-side discontinuous
phrases, and to compare them to setups which employ continuous phrases only.

1. Introduction

In standard statistical phrase-based machine translation with continuous phrases
(Koehn et al., 2003), lexical translation decisions are based on local context only.
Source-side discontinuous phrases, in contrast, can explain lexical dependencies be-
tween words that appear in a wider context in the source sentence. For example, the
French negation is formedwith the particle “ne” followed by a verb and a subsequent
negative word like “pas” for “not” or “rien” for “nothing”. The lexical decision for
correctly translating the negation must be based upon the wider context “ne … pas”
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or “ne … rien”. This can be achieved by using discontinuous phrases like ⟨ne ♢ pas,
do not⟩ and ⟨ne ♢ rien, nothing⟩, where the ♢ symbol represents a gap.

Statistical machine translation with discontinuous phrases as we define it in this
paper has been introduced by Galley and Manning (2010). We present a generaliza-
tion of the source cardinality synchronous search algorithm as described by Zens and
Ney (2008)—with coverage pruning per cardinality and lexical pruning per cover-
age—which is able to cope with source-side discontinuities. We give a formulation
of a discontinuous phrase extraction algorithm and conduct an in-depth analysis of
the differences to hierarchical phrase extraction (Chiang, 2005, 2007). On the NIST
Chinese→English translation task, we empirically compare a broad range of setups
and configuration parameters.

Note that, while Galley and Manning (2010) allow bilingual phrases with discon-
tinuities both in the source and in the target part, we restrict our study to phrases
which are allowed to be discontinuous in the source part only, but are required to be
continuous on the target side.

Our implementation has been released as part of version 2.2 of Jane (Vilar et al.,
2010, 2012;Wuebker et al., 2012), the RWTHAachen University open source statistical
machine translation toolkit.

2. Source cardinality synchronous search using discontinuous phrases

To translate a source sentence fJ1 of length Jwith the help of discontinuous phrases,
known discontinuous source parts are identified in fJ1 and a target sentence eI1 of
length I is generated out of the corresponding target parts. As in the continuous case,
the process yields a segmentation of the sentence.

2.1. Generalized segmentation

Let fJ1 be a source sentence, eI1 be a target sentence. In the continuous phrase-
based model, the segmentation of the sentence pair into K phrases is defined as a
sequence sK1 with sk = (ik;bk, jk) for k = 1 . . . K, where the source phrases f̃k = f

jk
bk

are continuous. ik denotes the endof the kth target phrase, bk denotes the beginning of
the kth source phrase and jk its end. Now, discontinuous source phrases are allowed,
so a generalized segmentation ṡK1 is introduced:

k → ṡk := (ik; C̃k), for k = 1 . . . K (1)

Still, ik denotes the end of the kth target phrase, but now the kth source phrase is
given by a phrase coverage set C̃k ⊆ {1, . . . J}. The phrase coverage contains all source
positions that are part of the kth source phrase. If C̃k = {bk, . . . jk} for some bk, jk ∈
{1, . . . J}, the source phrase it represents is continuous. In that case, the set C̃k is called
continuous.
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Figure 1. Discontinuous segmentation of a bilingual sentence pair.

Any C̃k can be decomposed into a union of Nk maximal continuous subsets

C̃k = {bk,1, . . . jk,1} ∪ . . . ∪ {bk,Nk
, . . . jk,Nk

} (2)

such that

∀ n : 1 ≤ n ≤ Nk : bk,n ≤ jk,n (3)
∀ n : 1 ≤ n < Nk : jk,n + 1 < bk,n+1 (4)

Each maximal continuous subset represents a maximal continuous source unit.
The combination of these continuous source units gives the completekth source phrase.
The kth target phrase is continuous by definition, as we do not allow for gaps on the
target side. This gives us the following notation:

f̃k,n := f
jk,n

bk,n
∀ n : 1 ≤ n ≤ Nk (5)

f̃k := f̃k,1 ♢ . . . ♢ f̃k,Nk
(6)

ẽk := eik−1+1 . . . eik (with i0 = 0) (7)

The segmentation ṡk describes a partition of the source and target sentence. On
the target side, nothing changes from the standard model. It must hold that i0 = 0,
iK = I and ik−1 < ik for 1 ≤ k ≤ K. On the source side, constraints on the phrase
coverage sets must be imposed:

K∪
k=1

C̃k = {1, . . . J} (8)

C̃k ∩ C̃k ′ = ∅ ∀ k ̸= k ′ (9)
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Figure 1 shows the segmentation of a French–English sentence pair, where two
discontinuous phrases are used: ⟨ne ♢ pas, do not⟩ and ⟨veux ♢manger, want to eat⟩.

2.2. Discontinuous translation model

With the new segmentation, the maximization is carried out over ṡK1 , and the log-
linear feature functions (Och and Ney, 2002) have to be adapted accordingly:

êÎ1 = argmax
I,eI

1

{
max
K,ṡK

1

M∑
m=1

λmhm(eI1, ṡ
K
1 ; f

J
1)

}
(10)

All standard features functions for phrase-based machine translation can be uti-
lized in the discontinuous phrase-based model with some minor notational changes.
A formal redefinition of these features is omitted here. Instead, two new features are
introduced which are unique for discontinuous translation.

The first one is the gappy flag, which counts the number of discontinuous phrases
used in the segmentation:

hisGappy(e
I
1, ṡ

K
1 ; f

J
1) =

K∑
k=1

[Nk > 1] (11)

It can be used to reward or penalize the application of discontinuous phrases, depend-
ing on its scaling factor. As before, Nk denotes the number of maximal continuous
subsets of C̃k, and [C] evaluates to 1, if condition C is true, and 0 if it is false.

The second one is the gap size feature. It counts the number of words in between
consecutive maximal continuous source units of discontinuous phrases:

hGS(e
I
1, ṡ

K
1 ; f

J
1) =

K∑
k=1

Nk−1∑
n=1

(bk,n+1 − jk,n − 1) (12)

The gap size feature differs from the standard translation model features, as it cannot
be precomputed and stored in the phrase table. Instead, it must be calculated during
decoding, similar to the distortion model.

2.3. Dynamic programming beam search

Whenmoving fromcontinuous phrases to phraseswith discontinuous source parts,
the search space is only slightly altered. Still, nodes of the search graph represent
triples (C, ẽ ′, j ′), whereC is a coverage set, ẽ ′ is the language model history and j ′ the
last translated source position. A translation decision now is a tuple (C̃k; ẽk). It can
be used if C ∩ C̃k = ∅; the successor state is given by:

(C ∪ C̃k, ẽ
′ ⊕ ẽk,max C̃k) (13)

20



Huck et al. Source-Side Discontinuous Phrases for MT (17–38)

INPUT: source sentence fJ
1
, maximum source phrase length l̃max, sorted translation candidates E(·),

models qTM(·), qLM(·), qDM(·), rest cost estimate R(·)
1 Q(∅, $, 0) = 0 ; all other Q(·, ·, ·) entries are initialized to −∞
2 FOR cardinality c = 1 TO J DO
3 FOR source phrase length l̃ = 1 TO l̃max DO
4 previous cardinality c ′ = c − l̃

5 FOR ALL coverages C ′ ⊂ {1, . . . J} : |C ′| = c ′ DO
6 FOR ALL start positions j ′ ∈ {1, . . . J} DO
7 FOR ALL end positions j ∈ {j ′ + l̃ − 1, . . . J}

8 FOR ALL phrase coverages C̃ with |C̃| = l̃, min C̃ = j ′, max C̃ = j

9 IF C ′ ∩ C̃ ̸= ∅ THEN CONTINUE
10 coverage C = C ′ ∪ C̃

11 FOR ALL states ẽ ′, j ′′ ∈ Q(C ′, ·, ·) DO
12 partial score q = Q(C ′, ẽ ′, j ′′) + qDM(j ′′, j ′)

13 IF q + R(C, j) + qTM(C̃) isTooBadForCoverage C THEN
14 CONTINUE
15 FOR ALL phrase translations ẽ ′′ ∈ E(C̃) DO
16 IF q + R(C, j) + qTM(ẽ ′′, C̃) isTooBadForCoverage C THEN
17 BREAK
18 score = q + qTM(ẽ ′′, C̃) + qLM(ẽ ′′|ẽ ′)
19 IF score +R(C, j) isTooBadForCoverage C THEN
20 CONTINUE
21 language model state ẽ = ẽ ′ ⊕ ẽ ′′

22 IF score > Q(C, ẽ, j) THEN
23 Q(C, ẽ, j) = score
24 B(C, ẽ, j) = (C ′, ẽ ′, j ′′)
25 A(C, ẽ, j) = ẽ

26 pruneCardinality c

Figure 2. Dynamic programming beam search algorithm with support for source
discontinuities.

The search can be carried out using dynamic programming. Let the helper func-
tion Q(C, ẽ, j) denote the score of the best path to node (C, ẽ, j) in the search graph.
This node can now be reached by translating any source phrase with phrase coverage
C̃ ⊆ C in a predecessor node (C\C̃, ẽ ′, j ′′). It must only hold that max C̃ = j and, for
the translation candidate ẽ ′′, ẽ ′ ⊕ ẽ ′′ = ẽ. The new dynamic programming recursion
equation is straightforward:

Q(∅, $, 0) = 0 (14)
Q(C, ẽ, j) = max

C̃:C̃⊆C∧max C̃=j

j ′′,ẽ ′,ẽ ′′:ẽ ′⊕ẽ ′′=ẽ

{
Q(C\C̃, ẽ ′, j ′′) + qTM(ẽ ′′, C̃) + qLM(ẽ ′′|ẽ ′)

+ qDM(j ′′,min C̃)
}

(15)

The translationmodel, languagemodel, anddistortionmodel helper functionsqTM(·),
qLM(·), and qDM(·) are defined as the weighted sums of the involved feature func-
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tions. The score of the best translation is given by:

Q̂ = max
ẽ,j

{
Q({1, . . . J}, ẽ, j) + qLM($|ẽ) + qDM(j, J+ 1)

}
(16)

The dynamic programming beam search algorithm can be changed to work with
discontinuous source phrases. Figure 2 shows the updated algorithm. The main dif-
ference to the standard algorithm (Zens, 2008; Zens and Ney, 2008) is in lines 7 to 10.
The standard algorithm loops over the source phrase length l̃ and the start position j ′,
and these two parameters determine the end position j = j ′ + l̃ − 1. The continuous
source phrase fjj ′ starts at position j ′ and ends at position j.

In the new algorithm, the source phrase length l̃ determines the cardinality of the
phrase coverage C̃. A discontinuous phrase starting at position j ′ with cardinality
|C̃| = l̃ does not necessarily end at position j = j ′ + l̃ − 1, but can end at any position
j ≥ j ′ + l̃ − 1. Therefore, a second loop over the end position is carried out in line 7.
In line 8, all phrase coverages with cardinality l̃ starting at position j ′ and ending at
position j are considered. A phrase matching algorithm is executed before the actual
search takes place. The phrase matching algorithm finds for all l̃, j ′, and j the phrase
coverages for which translation candidates are available.

3. Phrase extraction

3.1. Standard phrase extraction

In the standard phrase-based approach, only continuous phrases are extracted
(Och et al., 1999; Och, 2002). The set of continuous bilingual phrases BP(fJ1, e

I
1, A),

given a training instance consisting of a source sentence fJ1, a target sentence eI1, and
a word alignment A ⊆ {1, . . . , I}× {1, . . . , J}, is defined as follows:

BP(fJ1, e
I
1, A) =

{
⟨fj2j1 , e

i2
i1
⟩ : ∃(i, j) ∈ A : i1 ≤ i ≤ i2 ∧ j1 ≤ j ≤ j2

∧ ∀(i, j) ∈ A : i1 ≤ i ≤ i2 ↔ j1 ≤ j ≤ j2

}
(17)

Consistency for continuous phrases is based upon two constraints in this definition:
(1.) At least one source and target position within the phrase must be aligned, and (2.)
words from inside the source phrase may only be aligned to words from inside the
target phrase and vice versa.

3.2. Discontinuous phrase extraction

Ageneral discontinuous phrasewith source and target discontinuities is expressed
as a pair of coverage sets (C̃src, C̃tgt) with C̃src ⊆ {1, . . . , J} and C̃tgt ⊆ {1, . . . , I}.
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The phrase is consistent with the alignment A if and only if two conditions hold:

∃(i, j) ∈ A : i ∈ C̃tgt ∧ j ∈ C̃src (18)
∀(i, j) ∈ A : i ∈ C̃tgt ↔ j ∈ C̃src (19)

These are exactly the same constraints as for the continuous case, only with a relaxed
view on what is considered a phrase.

We now define the set of discontinuous bilingual phrasesD(fJ1, e
I
1, A)with discon-

tinuous source parts and continuous target parts. Let N be the total number of gaps
allowed in the source part of a phrase, and let Dn(f

J
1, e

I
1, A) denote the sets of discon-

tinuous phrases with exactly n gaps, n = 0 . . .N. The complete set of discontinuous
phrases is the union of these smaller sets:

D(fJ1, e
I
1, A) =

N∪
n=0

Dn(f
J
1, e

I
1, A) (20)

Before moving on to the definition of Dn, the constraint from Equation 18 will be
made stronger. For a phrase ⟨fj1,2

j1,1
♢ f

j2,2

j2,1
, ei2i1⟩, it should hold that the two maximal

continuous subsequences of the source part, fj1,2

j1,1
and f

j2,2

j2,1
are both connected to ei2i1

with a word alignment, i.e. there exists a pair (i, j) ∈ A with i1 ≤ i ≤ i2 ∧ j1,1 ≤ j ≤
j1,2 and a pair (i, j) ∈ A with i1 ≤ i ≤ i2 ∧ j2,1 ≤ j ≤ j2,2. This stronger constraint is
also imposed by Galley and Manning (2010). Furthermore, a gap must span over at
least one aligned source position, i.e. there exists a pair (i, j) ∈ A with j1,2 < j < j2,1.
The constraint from Equation 19 will be kept as it is. With these additional constraints
in mind, the sets Dn can be defined in a general way as follows:

Dn(f
J
1, e

I
1, A) =

{
⟨fj1,2

j1,1
♢ . . . ♢ f

jn+1,2

jn+1,1
, ei2i1⟩

∣∣∣ 1 ≤ i1 ≤ i2 ≤ I

∧ ∀k : 1 ≤ k ≤ n+ 1 :
(
1 ≤ jk,1 ≤ jk,2 ≤ J

∧ ∃(i, j) ∈ A : i1 ≤ i ≤ i2 ∧ jk,1 ≤ j ≤ jk,2

)
∧ ∀k : 1 ≤ k ≤ n :

(
∃(i, j) ∈ A : jk,2 < j < jk+1,1

)
∧ ∀(i, j) ∈ A :

(
i1 ≤ i ≤ i2 ↔ (

∃k : jk,1 ≤ j ≤ jk,2
))}

(21)

3.2.1. Discontinuous extraction algorithm

The algorithm for extracting all discontinuous phrases can be found in Figure 3.
The idea of the algorithm is to build up phrases with n gaps from phrases with n− 1

gaps. It does so by using helper setsWn (n = 0 . . .N)which contain candidate phrases
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INPUT: source sentence fJ
1
, target sentence eI

1
, alignment A,

maximum number of source gaps N
1 W0 = ∅
2 FOR j1 = 1 TO J DO
3 IF j1 is unaligned THEN CONTINUE
4 i1 = ∞; i2 = −∞
5 FOR j2 = j1 TO J DO
6 IF j2 is unaligned THEN CONTINUE
7 i1 = min

{
i1,min{i|(i, j2) ∈ A}

}
8 i2 = max

{
i2,max{i|(i, j2) ∈ A}

}
9 W0 := W0 ∪

{
⟨fj2

j1
, e

i2
i1
⟩
}

10 FOR n = 1 TO N DO
11 Wn = ∅
12 FOR ⟨fj1,2

j1,1
♢ . . . ♢ f

jn,2
jn,1

, e
i2
i1
⟩ IN Wn−1 DO

13 FOR j1 = jn,2 + 2 TO J DO
14 IF @(i, j) ∈ A : jn,2 < j < j1 THEN CONTINUE
15 IF j1 is unaligned THEN CONTINUE
16 i ′

1
= i1; i ′2 = i2

17 FOR j2 = j1 TO J DO
18 IF j2 is unaligned THEN CONTINUE
19 i ′

1
= min

{
i ′
1
,min{i|(i, j2) ∈ A}

}
20 i ′

2
= max

{
i ′
2
,max{i|(i, j2) ∈ A}

}
21 Wn = Wn ∪ {⟨fj1,2

j1,1
♢ . . . ♢ f

jn,2
jn,1

♢ f
j2
j1
, e

i ′2
i ′
1

⟩}
22 FOR n = 0 TO N DO
23 FOR phrase r IN Wn DO
24 IF check-consistency(r) THEN Dn = Dn ∪ {r}

Figure 3. Discontinuous phrase extraction algorithm.
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Figure 4. Visualization of discontinuous phrase extraction. Starting from the
inconsistent phrase ⟨f1, e3⟩ fromW0 (blank in (a)), the algorithm skips one aligned
position and reads another continuous source sequence. The result is first stored in

W1 (blank in (b)) and then, since it is a consistent discontinuous phrase, in D1 (dotted
in (c)).
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that do not necessarily fulfill all consistency constraints. In the end, from these helper
sets only the phrases that fulfill all constraints are extracted to Dn.

The first part of the algorithm, lines 2–9, is identical to the standard phrase ex-
traction algorithm. All continuous source sequences from the source sentence are
enumerated and the aligned continuous target parts collected, but without checking
the consistency constraints. All these phrases are stored in W0. In lines 10–21, each
candidate phrase with n − 1 gaps is extended to a phrase with n gaps by skipping
at least one aligned position (lines 13 and 15), finding a new continuous source se-
quence (line 17), and collecting the newly covered target positions (lines 19 and 20).
Finally, for all phrase candidates the consistency constraints are checked and the valid
phrases are added to the discontinuous phrase set (lines 22–24). Figure 4 visualizes
this process.

This algorithm is inspired by the one presented by Lopez (2007) for hierarchical
phrase extraction using suffix arrays, which itself is based upon the pattern matching
algorithm for variable length gaps by Rahman et al. (2006).

3.3. Hierarchical phrase extraction

Hierarchical phrases (Chiang, 2005, 2007; Vilar, 2011) are essentially special discon-
tinuous phrases where gaps are denoted by the non-terminals. The crucial difference
is that non-terminals on the source side and on the target side of hierarchical rules are
linked with a one-to-one relation. Typically, a single generic non-terminal symbol X
is used as a placeholder for the gaps within the right-hand side of hierarchical trans-
lation rules as well as on all left-hand sides of the translation rules that are extracted
from the training corpus.

3.3.1. Hierarchical rules for the discontinuous search algorithm

Interpreting hierarchical rules as discontinuous phrases is straight-forward. From
a given hierarchical rule

X → ⟨αX∼1βX∼2γ, δX∼1ϵX∼2ζ⟩ (22)

with α,β, γ ∈ F+ and δ, ϵ, ζ ∈ E+, where F denotes the source vocabulary and E the
target vocabulary, the left-hand side is discarded and all non-terminals are replaced
by gap symbols:

⟨α ♢ β ♢ γ, δ ♢ ϵ ♢ ζ⟩ (23)
Hierarchical rules naturally have gaps in their target parts. When using hierar-

chical extraction to obtain a phrase inventory for application in our discontinuous
search procedure, discontinuous target parts must be discarded, and non-terminals
at the phrase boundary be removed. This can either be done as a post-processing step,
enforcing a renormalization of the phrase probabilities, or it can directly be integrated
into the extraction algorithm.
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Figure 5. Tricky phrase reorderings. The hierarchical extractor can only generate the
phrases ⟨f2 ♢ f4, e1e2⟩ and ⟨f2 ♢ f4, e3e4⟩ from the first two examples by considering
the larger phrase ⟨f1f2f3f4, e1e2e3e4⟩ and first cutting out f1, then f3. The same
holds for the last two examples and the phrases ⟨f1 ♢ f3, e3e4⟩ and ⟨f1 ♢ f3, e1e2⟩

with words f2 and f4 respectively.

Some properties of hierarchical rules should be considered before using themwith
the discontinuous search algorithm. For a hierarchical translation system, the two
rules X → ⟨α,β⟩ and X → ⟨αX∼1, βX∼1⟩ are different. For a discontinuous system,
both represent the same phrase pair ⟨α,β⟩. It is tempting to automatically discard
all hierarchical rules with non-terminals at the boundaries of the source part to avoid
counting the samephrase pairmultiple times. In fact, whenpreparing the hierarchical
rule set for discontinuous translation, most of these rules must be discarded. How-
ever, there are cases where these phrases are needed because they enable extracting
rules which otherwise could not be extracted.

When extracting with at most two non-terminal symbols, there are two alignment
configurations that enforce keeping a source part with a non-terminal at its boundary,
because there is no otherway to extract the resulting phrase pair. Figure 5 shows these
two configurations. Wu (1997) characterized them as inside-out reorderings, because
they involve a phrasemoving from inside the source part to the boundary of the target
part and vice versa. Table 1 shows all hierarchical source and target parts that can be
used in our source cardinality synchronous discontinuous search algorithm, when
extracting with at most two non-terminals (or gaps) per phrase. To avoid confusion,
we use the term hierarchical phrase only for those phrases, and the term discontinuous
phrase only for phrases extracted with discontinuous phrase extraction.

The set of hierarchical phrases with up to N non-terminal symbols per rule is a
subset of the set of discontinuous phrases with up to N gaps. The difference in the
phrase tables from the discontinuous and the hierarchical extraction is analyzed in
Section 4.1.
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4. Empirical evaluation

Wepresent an empirical evaluation on theNISTChinese→English translation task.1
We work with a parallel training corpus of 3.0M Chinese–English sentences pairs
(77.5M Chinese / 81.0M English running words). Word alignments are calculated
with GIZA++2 in both directions with four IBM model 1 iterations, five HMM itera-
tions and four IBM model 4 iterations (Brown et al., 1993; Vogel et al., 1996; Och and
Ney, 2003). The two directions are combined using the refined heuristic by Och and
Ney (2003) to obtain a symmetrized alignment.

4.1. Phrase coverage

We first compare the phrase tables that result from the hierarchical and from the
discontinuous approach to phrase extraction.

A single-word extraction heuristic, forced single-word extraction heuristic, and an
extraction heuristic for unaligned words as described by Stein et al. (2011) are active
in all approaches. Phrases are restricted to a maximum source and target length of
10 words (including gap symbols) with at most two gaps in the source part. For the
discontinuous phrase extractor, a maximum gap size of 10 words is used, meaning
that the extractor may skip at most 10 words to introduce a new gap.

Let the span of a source phrase f̃ in a training sentence fJ1 be the distance between its
first word and its last word. For a continuous source phrase f̃ = f

j2
j1

the span is given
by j2 − j1 + 1. For a discontinuous phrase with n gaps f̃ = f

j1,2

j1,1
♢ . . . ♢ f

jn+1,2

jn+1,1
the

span is given by jn+1,2−j1,1+1. For hierarchical phrase extraction, a restriction of the
maximum source phrase length is also a restriction for the span of the source phrases.
A hierarchical phrase is generated by taking a standard phrase and cutting out another
standard phrase that is contained in the first one. When the initial standard phrase
has a maximum source length of 10, there is no way to generate a hierarchical phrase
with a span larger than 10. To extract more discontinuous phrases, this constraint was
not imposed in the discontinuous phrase extractor. A discontinuous phrase may span
over more than 10 words as long as it consists of at most 10 of them and as long as in
each gap at most 10 words are skipped.

After extraction, the phrase tables are filtered towards a larger collection of test
sets, i.e. phrases that are not applicable for the translation of any input sentence from
one of the test sets are removed from the phrase table. Table 2 shows the number of
phrase pairs in the filtered tables extractedwith the standard, hierarchical and discon-
tinuous approach. By definition, the hierarchical and discontinuous approach extract
all standard phrases from the standard approach.

1http://www.itl.nist.gov/iad/mig/tests/mt/
2http://code.google.com/p/giza-pp/
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source part allowed target parts resulting phrase
α β ⟨α,β⟩
αX∼1β X∼1γ ⟨α ♢ β, γ⟩

γX∼1

αX∼1βX∼2γ X∼1δX∼2 ⟨α ♢ β ♢ γ, δ⟩
X∼2δX∼1

X∼1X∼2δ

X∼2X∼1δ

δX∼1X∼2

δX∼2X∼1

X∼1αX∼2β γX∼1X∼2 ⟨α ♢ β, γ⟩
X∼2X∼1γ

αX∼1βX∼2 X∼1X∼2γ ⟨α ♢ β, γ⟩
γX∼2X∼1

Table 1. Hierarchical phrases for the discontinuous model. The overview is complete if
no more than two non-terminals are allowed. The last four rows represent the special

cases from Figure 5.

approach total standard gappy % gappy
standard 34.0M 34.0M 0 0
hierarchical 48.0M 34.0M 14.0M 29
discontinuous 85.4M 34.0M 51.4M 60
discontinuous* 53.0M 34.0M 19.0M 36

Table 2. Chinese–English phrase table statistics. In the row marked with an
asterisk (*), the maximum span of the discontinuous phrases is limited to 10 for

hierarchical compatibility.

absolute relative
different length constraints 32.4M 87%
gaps over non-standard phrases 2.7M 7%
obstacle alignment dots 2.3M 6%
total additional 37.4M 100%

Table 3. Reasons for additional discontinuous phrases.
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Figure 6. Gaps over non-standard phrases. Out of these three training examples, the
hierarchical phrase extractor cannot extract the blank phrases, because the dotted

initial phrases are non-standard.
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f5 f6

Figure 7. Obstacle alignment dots. In both examples, the gaps span over standard
phrases, but the hierarchical extractor cannot extract the blank phrases due to the

dotted alignment dots.

An analysis of the 37.4M additional discontinuous phrases has revealed three
classes of phrases that are extracted with the discontinuous approach, but not with
the hierarchical approach in this setting. These classes can be characterized by dif-
ferent length constraints, gaps over non-standard phrases and obstacle alignment dots. The
different length constraints were alreadymentioned above. A description of the other
classes follows in the remainder of this section. Table 3 shows how the additional dis-
continuous phrases are distributed over the three classes. In fact, 32.4M of the 37.4M
additional phrases result from the different length constraints. From the remaining
5.0M additional discontinuous phrases that obey the hierarchical length constraints,
2.7M have gaps over non-standard phrases and 2.3M have obstacle alignment dots.

4.1.1. Gaps spanning over non-standard phrases

Some discontinuous phrases cannot be extracted with hierarchical phrase extrac-
tion because they include gaps over non-standard phrases. These discontinuous phra-
ses cannot result from cutting out a standard phrase from another standard phrase,
regardless of the chosen extraction parameters. Figure 6 depicts three alignments
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with gaps over non-standard phrases, where the hierarchical extractor cannot extract
a phrase with the source part f1 ♢ f3. In the first two examples, the gap comprises a
phrase with a discontinuous target part. In the third example, there are two discon-
tinuous phrases in a cross-serial configuration (Søgaard and Kuhn, 2009).

4.1.2. Obstacle alignment dots

The third class consists of all discontinuous phrases that do not belong to the first
two classes, i.e. they span over at most 10 words and have no gaps over non-standard
phrases. Some of these phrases can be extracted with hierarchical phrase extraction
if different extraction parameters are chosen. Some are discontinuous phrases with
gaps over standard phrases which are not hierarchical for other reasons. All phrases
of the third class are extracted from alignments with obstacle alignment dots at some
position. These obstacle dots either prevent the phrase from being extracted with the
hierarchical approach due to the chosen extraction parameters or prevent them from
being hierarchical at all. See Figure 7 for two examples.

The distinction between phraseswith gaps over non-standard phrases and phrases
with obstacle alignment dots is not very strict. In the first example from Figure 7
the gap consists of part of the discontinuous phrase ⟨f2 ♢ f4, e1 ♢ e3e4⟩, while in
the second example the second gap could result from cutting out the discontinuous
phrase ⟨f4 ♢ f6, e2e3⟩. However, the smallest phrases both gaps comprise are standard
phrases.

4.2. Translation quality

4.2.1. Experimental setup

In our translation setups, we use the following features (apart from the ones that
have been or will be explicitly mentioned): phrase translation probabilities, lexical
translation probabilities from IBM model 1 (Brown et al., 1993) and discriminative
word lexicon models (Mauser et al., 2009) in the manner of Huck et al. (2011), each
for both translation directions, length penalties on word and phrase level, source-
to-target and target-to-source phrase length ratios, insertion models (Huck and Ney,
2012), four binary features marking phrases that have been seen more than one, two,
three or five times, respectively, a distance-based distortion penalty, and an n-gram
languagemodel. The languagemodel is a 4-gramwithmodified Kneser-Ney smooth-
ing (Kneser and Ney, 1995) which was trained with the SRILM toolkit (Stolcke, 2002)
on a large collection of English data including the target side of the parallel corpus.
Phrase tables have not been prepruned to contain a maximum number of translation
candidates per source side, but the decoder is configured to load at most the 200 best
candidates with respect to the weighted phrase-level model scores. We do not impose
any hard restriction on the jump width, but the distance-based distortion cost is lin-
ear up to a certain limit and quadratic beyond that. The soft jump distance limit is
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set to 10 in the experiments. Our decoder computes a rest score estimate for the lan-
guage model, translation model, and distortion model (Zens and Ney, 2008; Moore
and Quirk, 2007). Model weights are optimized against B (Papineni et al., 2002)
with Minimum Error Rate Training (MERT) (Och, 2003), performance is measured in
truecase with B and T (Snover et al., 2006). We employ MT06 as development
set, MT08 is used as held-out test set.

In the experiments with source-side discontinuous phrases, we depart from the
description as given in Section 2 in one aspect: After the application of a discontin-
uous phrase with coverage vector C̃ = {b1, . . . , j1} ∪ . . . ∪ {bN, . . . , jN} we set the last
translated position to j1, i.e. the maximum of the leftmost maximal continuous subset
of the coverage vector, not to max C̃. The modifications to the notation of Section 2 as
well as to the beam search algorithm from Figure 2 are straightforward, and we will
omit them here. We extensively compared both variants and found that they are per-
forming at the same level in terms of translation quality. The reason why we decided
in favor of this variant is that it may encourage the usage of discontinuous phrases to
a larger extent due to a reduced distortion cost (and likewise a reduced distortion rest
cost estimate for partial hypotheses).

4.2.2. Experimental results

In a first series of experiments, different reordering constraints are evaluated. Re-
sults can be found in Table 4. The last column indicates the gappy usage (GU), i.e. the
amount of sentence translations in the respective hypothesis for the test set which use
at least one discontinuous phrase. Starting with monotonic decoding3 in the first row,
more and more non-monotonicity is allowed in the following rows. First, a soft jump
distance limit of 10 is used with phrase-level IBM reordering constraints (Zens et al.,
2004) set to 2 (thus allowing only one gap at a time in each coverage set). Then, the
number of allowed uncovered blocks according to the reordering constraints is in-
creased step by step. The histogram size for reordering pruning (RH) is set to 64, for
lexical pruning (LH) it is also set to 64 for these experiments.

In a second series of experiments, the pruning settings are analyzed. Using the
phrase-level IBM reordering constraint with a maximum of 4 runs (thus allowing up
to three gaps at a time in each coverage set), different combinations of reordering his-
togram size and lexical histogram size are tested. We keep the same scaling factors in
the log-linear model combinations for all pruning settings. These optimized model
weights have been obtained by running MERT on configurations (with and with-
out discontinuous phrases, respectively) with a relatively large search space (RH=64,
LH=64).

3In pseudo-monotonic decoding with discontinuous phrases, a new phrase must always start at the
leftmost uncovered position in the coverage set. Any explicit jumps are not permitted, and we do not
compute distance-based distortion costs. Discontinuous phrases may introduce gaps, though.

31



PBML 99 APRIL 2013

IBM reordering MT06 (dev) MT08 (test)
constraints gaps B [%] T [%] B [%] T [%] GU
monotonic no 30.3 62.1 24.7 66.1 –

yes 31.6 61.3 25.4 65.7 38.8 %
2 no 32.7 61.0 25.8 66.2 –

yes 32.9 60.9 25.8 66.1 26.2 %
3 no 32.7 61.1 26.1 65.8 –

yes 32.8 61.1 25.9 66.0 25.4 %
4 no 32.6 61.1 26.1 65.8 –

yes 32.8 61.0 26.1 65.7 26.2 %
5 no 32.5 61.0 26.1 65.4 –

yes 32.7 60.9 25.8 65.7 25.7 %

Table 4. Effect of reordering constraints (with LH=64, RH=64).
The experiments have been carried out with a soft jump distance limit of 10.

Results are reported in truecase.

Table 5 shows the results. As the gappy usage indicates, a considerable amount of
discontinuous phrases is applied for the generation of the single-best hypotheses for
all combinations of pruning parameters. However, clear advantages over the setups
without discontinuous phrases become evident with very restrictive pruning settings
only (RH=4 or LH=4).

We next examine the impact of the gappyflag and the gap size feature (with RH=64
and LH=64). Both features can be used by the decoder to either penalize or reward
the use of discontinuous phrases. Table 6 shows that the decoder uses discontinuous
phrases most if these two features are not present (last row). In this case, there is
no way to distinguish discontinuous from continuous phrases, and the translation
quality drops by 1.1 %B on the development set and 1.6 %B on the test set. The
features seem to be required to penalize the application of discontinuous phrases.

Finally, the effect of the different phrase inventories is analyzed. The results are
presented in Table 7. With the hierarchical phrase table, the number of sentence trans-
lations that use phrases with gaps is quite low compared to the discontinuous phrase
table.4 With the discontinuous phrase table, no improvement is achieved by adding
a binary feature which enables the system to distinguish those gappy entries which
are also extracted with the hierarchical approach.

4We would like to emphasize that hierarchical in Table 7 denotes the utilization of a phrase inventory
with source-side gaps that has been produced with the hierarchical extractor. The search is conducted
with the source cardinality synchronous search algorithm from Figure 2. No synchronous context free
grammar (SCFG) formalism is pursued. See (Huck et al., 2012) for results on the same data with the SCFG
hierarchical pipeline and a parsing-based cube pruning decoder.
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pruning MT06 (dev) MT08 (test)
RH LH gaps B [%] T [%] B [%] T [%] GU
4 4 no 31.2 61.8 25.2 66.1 –

yes 31.7 61.2 25.7 65.7 25.9 %
4 16 no 31.7 61.5 25.5 66.0 –

yes 32.1 60.8 25.8 65.8 24.8 %
4 64 no 31.8 61.4 25.5 66.1 –

yes 32.2 60.9 25.7 65.8 24.9 %
4 128 no 31.9 61.4 25.4 66.1 –

yes 32.2 61.0 25.8 65.9 25.3 %
16 4 no 31.7 61.5 25.3 66.0 –

yes 32.0 61.1 25.9 65.8 28.4 %
16 16 no 32.4 61.1 25.9 65.9 –

yes 32.5 60.9 26.0 65.5 26.3 %
16 64 no 32.7 61.1 26.1 65.8 –

yes 32.6 60.9 26.0 65.7 25.4 %
16 128 no 32.6 61.1 26.0 65.9 –

yes 32.6 61.0 26.0 65.7 25.2 %
64 4 no 31.8 61.5 25.4 66.0 –

yes 32.1 61.1 25.7 65.9 28.2 %
64 16 no 32.4 61.2 25.9 65.8 –

yes 32.6 61.0 26.0 65.7 26.4 %
64 64 no 32.6 61.1 26.1 65.8 –

yes 32.8 61.0 26.1 65.7 26.2 %
64 128 no 32.5 61.1 26.1 65.8 –

yes 32.7 61.0 26.1 65.7 26.3 %
128 4 no 31.8 61.5 25.4 66.0 –

yes 32.0 61.2 25.7 65.8 28.4 %
128 16 no 32.4 61.2 25.9 65.8 –

yes 32.6 61.0 26.1 65.7 26.5 %
128 64 no 32.6 61.2 26.0 65.9 –

yes 32.7 61.0 26.1 65.7 25.9 %

Table 5. Effect of pruning parameters. Results are reported in truecase.

4.2.3. Discussion

The discontinuous model does not yield significant improvements over the con-
tinuous baseline model. Indeed, both models perform on a similar level in almost all
directly comparable system configurations. Galley and Manning (2010), in contrast,
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features MT06 (dev) MT08 (test)
isGappy gapSize gaps B [%] T [%] B [%] T [%] GU

– – no 32.6 61.1 26.1 65.8 –
yes yes yes 32.8 61.0 26.1 65.7 26.2 %
yes no yes 32.7 60.9 25.9 65.6 23.9 %
no yes yes 32.6 61.2 25.5 65.8 25.9 %
no no yes 31.7 62.1 24.5 66.9 69.2 %

Table 6. Effect of gappy features (with LH=64, RH=64).
Results are reported in truecase.

MT06 (dev) MT08 (test)
phrase table gaps B [%] T [%] B [%] T [%] GU
standard no 32.6 61.1 26.1 65.8 –
hierarchical yes 32.6 61.1 25.8 65.9 6.1 %
discontinuous yes 32.8 61.0 26.1 65.7 26.2 %
discontinuous+HF yes 32.8 60.9 25.9 65.6 23.4 %

Table 7. Effect of the phrase inventory (with LH=64, RH=64). In the experiment
marked with (+HF), a binary feature has been added which enables the system to
distinguish those gappy entries of the discontinuous phrase table which are also
extracted with the hierarchical approach. Results are reported in truecase.

have reported uncased gains of +0.6 %B on MT06 and +0.4 %B on MT08 with
source-side gaps (and without lexicalized reordering) in their system.5

First, we need to discuss whether the differences of the search organization in our
decoder as compared to the system by Galley and Manning (2010) may be harmful.
Galley and Manning (2010) do not prune reordering hypotheses and lexical hypothe-
ses separately, and their decoder does not impose any reordering constraints in the
manner of our phrase-level IBM reordering constraints. Apart from that, their prun-
ing and maximum jump distance settings are rather more restrictive than those we
utilized in our setups. Zens and Ney (2003) found that IBM constraints are quite lim-
iting, e.g. as compared to ITG constraints. Regardless of that, reordering constraints
and separate pruning of reordering and lexical hypotheses typically guide towards
promising translations in an early stage of the search process. At least we would have

5The uncased B scores of the system with standard phrase table from Table 7 are 34.7 on MT06
and 27.6 on MT08, the uncased B scores of the system with discontinuous phrase table are 34.6 on MT06
and 27.6 on MT08. We furthermore ran these systems on MT02, MT04, and MT05, but did not observe any
larger gains on any of these alternative test sets.
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expected to see an advantage with discontinuous phrases over setups with standard
phrases only as we increase the permissible amount of reordering. This is however
not the case.

Another aspect we should consider is the quality of the word alignment and its
suitability for the discontinuous translation model. We trained our word alignment
with four IBMmodel 1, five HMM and four IBMmodel 4 iterations, Galley and Man-
ning (2010) theirs with two IBM model 1 and two HMM iterations. We symmetrized
our word alignment with the refined heuristic by Och and Ney (2003), which is com-
parable to thewidely-used grow-diag-final-and heuristic (Koehn et al., 2003). It usu-
ally performs very well for standard phrase-based systems in our experience. Galley
and Manning (2010) employ grow-diag-final for their hierarchical setup and grow-
diag for the standard baseline and the discontinuous setup. It is possible that our stan-
dard heuristic works well for standard phrase-based translation, while discontinuous
phrase-based translation might come up to its best performance based on different
properties of the word alignment. We will try to empirically verify this supposition
in future work.

5. Conclusion

In this work, a dynamic programming beam search algorithm for phrase-based
statisticalmachine translationwith coverage pruning per cardinality and lexical prun-
ing per coverage (Zens and Ney, 2008) has been extended to support phrases with a
discontinuous source part similar to (Galley and Manning, 2010). Two approaches
to extract phrases with source parts that are allowed to contain gaps have been pre-
sented: the hierarchical approach and the discontinuous approach. The hierarchical
phrase table is in fact a subset of the discontinuous phrase table. The differences have
been discussed and analyzed empirically.

The experimental evaluation on the NIST Chinese→English translation task has
been conducted with a focus on reordering constraints, pruning settings, and feature
functions, as well as on the different phrase inventories. We found that the setups
which employ source-side discontinuous phrases unfortunately barely outperform
comparable setups which employ continuous phrases only. The translation quality as
measured in B remains at the same level. In future work, we intend to examine a
possible impact of word alignment symmetrization heuristics.

Our implementations of the algorithms which we described in this paper have
been released as part of Jane, theRWTHAachenUniversity statisticalmachine transla-
tion toolkit. The Jane toolkit is publicly available under an open source non-commer-
cial license and can be downloaded from http://www.hltpr.rwth-aachen.de/jane/.
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