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Abstract
In this paper, German, Polish, Spanish, and Portuguese large vo-
cabulary continuous speech recognition (LVCSR) systems de-
veloped by the RWTH Aachen University are presented. All
the above mentioned systems for the aforementioned languages
are used for the Quaero and EU-Bridge project evaluations.
The LVCSR systems developed for these competitive evalua-
tions focus on various domains like broadcast news, podcasts
and lecture domain. Transcription of the speech for these tasks
is challenging due to huge variability in the acoustic condi-
tions and a significant portion of audio data includes sponta-
neous speech. Good improvements are obtained using state-
of-the-art multilingual bottleneck features, minimum phone er-
ror trained acoustic models, language model (LM) adaptation
and confusion-network based system combination. In addition,
an open vocabulary approach using morphemic units is investi-
gated along with the LM adaptation for the German LVCSR.
Index Terms: LVCSR, European, Quaero, EU-Bridge

1. Introduction
This paper describes various details of the LVCSR systems
developed by the RWTH Aachen University. All these sys-
tems for various languages are used for the Quaero-2013! and
EU-Bridge-2014!! evaluation campaign. The LVCSR systems
developed for these projects focus on transcribing the speech
mainly from Broadcast News, Podcasts and lecture data. All
tasks involve large vocabularies for speech transcriptions. Tran-
scription of the speech in these evaluations is challenging be-
cause of a huge variability in the acoustic conditions and also a
large portion of audio includes spontaneous speech. Most of the
described systems used for these projects are built upon the data
accumulated from previous Quaero evaluations [1]. The major
improvements obtained in the present systems compared to our
earlier Quaero systems are achieved by using multilingual bot-
tleneck features, open-vocabulary language models, language
model adaptation, and system-combination techniques like con-
fusion network combination [2, 3, 4, 5, 6, 7].

For the development of LVCSR systems, using manually
transcribed speech data involves significant cost factor. There-
fore, methods which are able to reuse out-of-domain or multi-
lingual resources to ease the model training, have growing inter-
est. Neural networks (NN) have become a major component in
the state-of-the-art ASR system, and are used to extract features

! http://www.quaero.org
!! http://www.eu-bridge.eu

(probabilistic [8] or bottleneck (BN) TANDEM approach [9])
and/or to model the emission probability in the HMM frame-
work directly (hybrid approach) [10].

In [11, 12] it was observed that Multi Layer Perceptron
(MLP) based NN posterior features possess language indepen-
dent properties to a certain degree: the cross-lingual porting of
NNs could lead to significant improvement in a different lan-
guage. In order to exploit resources of multiple languages in
acoustic model training, there is usually a need to unify similar
sounds across different languages e.g. by IPA or SAMPA. How-
ever, as was shown by [13] the training of NNs on multiple lan-
guages is possible without such a mapping if language depen-
dent output layers are used and only the hidden layer parameters
are shared between the languages. Combining the multilingual
learning with the bottleneck approach [14, 2] demonstrated that
the multilingual BN features could benefit from the additional
non-target language data and outperformed the unilingual BN.
Through better generalization the multilingual BN features can
offer improved portability on an new language, and acoustical
mismatch between the training and testing can be reduced in
the target language by exploiting matched data from other lan-
guages [15]. Since transcribed lecture data is not provided for
the evaluation for most of the languages, in our systems the BN
features are trained on large amount of Broadcast News and
conversations data of multiple languages. Covering wide va-
riety of acoustic conditions through the multilingual resources,
we aimed at improving the robustness of the acoustic model to
recognize acoustically less matched lecture data.

On the other hand, word morphology is an important factor
to be considered beforehand for a robust language modeling.
In contrast to the European languages like Polish, Spanish and
Portuguese, German is a morphologically rich language having
a high degree of word inflections, derivations and compounding.
Therefore, it is typical to observe high out-of-vocabulary (OOV)
rates and poor LM probabilities for a German LVCSR system
even when large vocabularies are used. Thus, sub-lexical lan-
guage modeling is used to decrease the OOV rate and reduce
the data sparsity [16, 17, 18]. In this work, we also investigate
the use of the state-of-the-art LMs like Maximum Entropy (ME)
LMs, which incorporate various knowledge sources as features
in the sub-lexical LMs. Furthermore, we also experiment the
use of Maximum-A-Posteriori (MAP) adaptation on top of the
ME LMs for German, Polish and Spanish systems. Thus, the
benefits of both the ME LMs and the traditional N -gram back-
off LMs are effectively combined using interpolation. For Por-
tuguese LVCSR system, two separate systems are developed us-



ing MFCC and PLP features augmented with multilingual bot-
tleneck features. The advantages of both the systems are com-
bined using confusion network based system combination.

2. Acoustic Model (AM)
The acoustic data supplied by the Quaero project (2009-2012) is
used for acoustic modeling. The data could be broadly classified
into three categories, namely: web data, broadcast news and the
European parliament plenary sessions (EPPS) data.

2.1. Resources

Table 1 lists the amount of audio data used for German LVCSR
system [1]. Overall, 140 hours of across-domain acoustic train-
ing data is used.

Table 1: Acoustic Training data (Lng.: Language, dur.: dura-
tion (hours), seg.:segments, DE: German, PL: Polish, ES: Span-
ish and PR: Portuguese)

Lng. Corpus #Dur. #Segs # words
EPPS08
+ WEB08

DE + Quaero
2010+2011+2012 142 29K 1.5M

PL Quaero
+Broadcast News 110 29K 1.0M

ES Quaero
2010+2011+2012 390 214K 4M

PR Broadcast News 110 20K 1.1M

2.1.1. Cepstral features
16Mel-cepstral coefficients (MFCCs) are extracted every 10ms
from the audio files. 20 logarithmic critical band energies
(CRBE) are computed over a Hanning window of 25ms. For the
piecewise linear vocal tract length normalization (VTLN) text-
independent Gaussian mixture classifier was trained to estimate
the warping factor (fast-VTLN). After the segment-wise mean
and variance normalization, 9 consecutive frames of MFCC
are mapped by linear discriminant analysis (LDA) to a 45-
dimensional subspace.

2.1.2. Multilingual bottleneck MRASTA features

Multilingual MRASTA features are applied for German, Pol-
ish and Spanish tasks. The temporal trajectories of the CRBEs
are smoothed by two-dimensional band pass filters to cover the
relevant modulation frequency range (MRASTA) [19]. One
second trajectory of each critical band is filtered by first and
second derivatives of the Gaussian function, where the standard
deviation varies between 8 and 60ms resulting in 12 temporal
filters per band. Our final BN features are extracted from hi-
erarchical, MLP based processing of the modulation spectrum
[20, 21]. The input of the first MLP contains the fast modulation
part of the MRASTA filtering (228 dim.), whereas the second
MLP is trained on the slow modulation components (228 dim.)
and on 9-frame context of the PCA transformed BN output of
the first MLP (9*43). The modulation features fed to the MLPs
are always augmented by the CRBE.

Furthermore, robust MLP features are generated using a
multilingual training method as described in [13]. The MLP
training data uses four languages: German, English, French,
and Polish. The final multilingual BN features are trained on

∼ 800 hours of speech data from the Quaero project as shown
in Table 2. The feature vectors extracted from the joint corpus
of the aforementioned four languages are randomized and fed
to the MLPs. Using language specific softmax outputs, back
propagation is initiated only from the language specific subset
of the output depending on the language-ID of the feature vec-
tor. The MLPs are trained according to cross-entropy criterion,
and approximate 1500 tied-triphone state posterior probabilities
per each language [22]. The BN features were reduced by PCA
acounting for 95% of the total variability (38 dim.) To prevent
over-fitting and for adjusting the learning rate parameter, 10%
of the training corpus is used for cross-validation. The BN
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Figure 1: The joint training of deep context-dependent bottle-
neck MLP features on multiple languages (DE, FR, EN, PL).
The different colors indicate different languages, and language
dependent back-propagation from the output layer. The other
parts of the network including the bottleneck layer are shared
between the languages.

Table 2: Multilingual broadcast news and conversation re-
sources used for BN feature training.

language German English French Polish
Duration of 142 232 317 110speech [h]

features of the German, Polish, Spanish and Portuguese evalua-
tion systems are based on deep MLP. The size of the 6 non-BN
hidden layers was set to 2000, the bottleneck layers consisted
of 60 nodes, before the last hidden layer.

2.2. AM Training

In our systems, the outputs of a neural network are used as in-
put features for a Gaussian mixture model (GMM). The final
83-dimensional feature vectors are obtained by concatenating
the spectral features with the multi-layer-perceptron (MLP) fea-
tures described in 2.1.1. The acoustic models (AM) training fol-
lowed similar recipes, the GMMs have been trained according
to the maximum likelihood (ML) criterion with the expectation
maximization algorithm (EM) with Viterbi approximation and a
splitting procedure. The GMMs have a globally pooled, diago-
nal covariance matrix. 4, 500 generalized triphones determined



by a decision-tree-based clustering (CART) are modeled in both
languages.

Table 3: Text Resources (# words: Running words)

ln. corpus # words

DE

TAZ 151M
German News 155M
Blogs+Web 797M
Call-Home 5.9M
Multilingual Parallel data 104M
Lectures 5.0M
News + acoustic trans. 971M
EU-Bridge in-domain data 8K

PL

Kurier Lubelski- News 77M
Nowosci - News 460M
Blogs+Web 710M
News 120M
Official EU-Bridge data 350K
Indomain+ Quaero+ EU-Bridge acoustic trans. 31M

ES

Gigaword 1.18B
Quaero 600M
Quaero+Translectures∗
+EPPS acoustic transcriptions 14M

PR Euro-News+ acoustic trans.
+In-domain 14M

*http://www.translectures.eu

Table 4: Recognition corpus statistics (ln: language, crp: cor-
pus, dur: duration in hours, vocab: vocabulary size, OOV:
effective out-of-vocabulary rate, prj: project Quaero (QRO) or
EU-Bridge (EUB∗))

ln. prj domain crp dur. vocab OOV
(hrs) [%]

DE†

QRO News dev 3.1 300k 0.20
+podcasts eval 3.4 0.13
Lectures dev 3.3 375k 0.25
(OMTP‡) eval 3.2 0.46

EUB Euro-News dev 0.5 300k 0.18
eval 0.6 −

PL
QRO News dev 3.1 600k 1.10

+podcasts eval 3.3 1.30

EUB Euro-News dev 0.5 1.83
eval 0.5 −

ES QRO News dev 3.6 320k 0.45
+podcasts eval 3.5 0.42

PR EUB News dev 0.36 171k 0.0
+podcasts eval 0.49 −

†: Sub-lexical systems are used
‡ OMTP: Online Multimedia Translation Platform
* 2014 dryrun evaluation campaign

2.3. Speaker Adaptation

Several speaker adaptation techniques are used in our tasks.
First, mean and variance normalization has been applied to the
spectral features. We also applied a vocal tract length normal-
ization (VTLN) to the MFCC features. As an additional pass,
speaker adaptation using constrained maximum likelihood lin-
ear regression (CMLLR) [23] with a simple target model ap-
proach is used [24]. Speaker Adaptive Training (SAT) is per-
formed ie., by applying the CMLLR transformation to the train-
ing data to generate new GMMs. We applied speaker adaptation
for all the tasks in this paper.

Table 5: Recognition results (Ln.: Project-Language ID, FW:
full-word system, SW: sub-lexical system, Crp: corpus, BN:
Broadcast News + podcasts corpus, OMTP: Multimedia cor-
pus (eg.: lectures), PPL : perplexity, CNC: confusion network
combination,Ord: LMOrder,AM: Acoustic Model,ML: Max-
imum Liklihood AMs (2nd pass), BO: backoff LM, ME: BO
Interpolated Maximum Entropy LM, sp: supervised adapted
MELM, usp: unsupervised adapted MELM )

Prj. Expt. Crp AM LM LM Ord PPL WER
Adap [%] [%]

Q
UA
ER
O
-D
E∗ SW dev ML BO no 5 255.5 16.1

(BN) ME 4 252.6
eval BO no 5 324.0 14.5

ME 4 321.0
usp 308.1 14.4

Q
UA
ER
O
-D
E∗

SW dev ML BO no 5 435.8 21.3
(OMTP) ME 4 435.4

eval BO no 5 523.9 25.7
ME 4 515.7 25.6

sp 491.8 25.3
usp 477.5 25.2

Q
UA
ER
O
-P
L∗

FW dev ML BO no 5 656.1 12.5
(BN) MPE 11.8

ME 4 645.3 11.7
eval MPE BO no 5 658.8 13.7

ME 4 640.3 13.5
sp 601.9 13.2
usp 618.5 13.3

Q
UA
ER
O
-E
S∗ FW dev ML BO no 4 189.3 15.0

(BN) MPE 14.1
ME 182.3 14.0

eval MPE BO no 187.5 13.1
ME usp 187.1

EU
B-
D
E∗

project∗∗- dev – – – – – 23.6
baseline eval 20.8
RWTH dev ML BO no 5 334.8 9.3
SW (BN) eval – 11.8

EU
B-
PL

∗

project∗∗- dev – – – – – 28.3
baseline eval 18.4
RWTH dev MPE BO no 5 431.2 11.9
FW (BN) eval – 9.4

EU
B
-P
R

∗

project∗∗- dev – – – – – 35.8
baseline eval 28.0
MFCC dev ML BO no 5 348.9 25.3
PLP 25.8
CNC 24.6
(BN) eval – 18.7

*Best system in-terms of the WER in the evaluation.
**Project baseline

2.4. Minimum Phone Error (MPE) Models

In general, MPE based discriminative training provides addi-
tional gain in terms of WER compared to conventional Max-
imum Liklihood (ML) training [25, 26]. The initial Gaus-
sian acoustic model has been further trained discriminatively by
MPE training. There are r = 1, ..., R training utterances each
with transcription Wr and feature sequence Xr = x1, ..., xTr

of length Tr . The sentence-level minimum phone error criterion
incorporates an accuracy score A(W,Wr), which is the phone



transcription accuracy of hypothesis sentenceW given the ref-
erence sentenceWr [27]. This is nearly equal to the number of
reference phones minus the number of errors. Therefore :

FMPE(Λ) = −τΛ||Λ− Λ0||
2

+
R
∑

r=1

∑

W∈Mr

PΛ(W |Xr)A(W,Wr)
(1)

PΛ(Wr|Xr) =

(

p(Wr)
1

η · pΛ(Xr|Wr)
)β

∑

W∈Mr

(

p(W )
1

η · pΛ(Xr|W )
)β

(2)

pΛ(Xr|W ) = max
s
Tr
1

|W

{

Tr
∏

t=1

p(st|st−1)p(xt|st)

}

(3)

Center regularization is used in MPE training, which loosely
binds Λ to their initial values Λ0. Mr is the set of all possible
word sequences, η is a language model scale, and β is a poste-
rior scale. p(W ) are word sequence prior probabilities obtained
from language model. p(x|s) is the emission probability of fea-
ture x given acoustic model HMM state s, and p(st|st−1) is the
transition probability from state st−1 to state st.

3. Corpus statistics
The development and evaluation corpus statistics for all the ex-
perimented languages are shown in Table 4. OOV rates and
perplexities are not shown in Tables 4 and 5 for EU-Bridge
eval corpora, as they are not released by the project committee.

4. Language Model (LM)
The LM text is collected from various sources like Broadcast
News, Podcasts, Blogs, Web and Audio-transcriptions. The
noisy raw text is normalized using language dependent set of
rules and semi-automatic methods. Different types of data used
to generate a LM are shown in Table 3. Vocabulary is generated
based on the frequency of the words and then domain specific
backoff N -gram LMs are created. Heldout corpus is used to
generate the interpolation weights and domain adapted LMs are
created using using linear interpolation [28].

For German LVCSR sub-lexical experiments, Morfessor is
used to decompose the words [29]. Low frequency words are
excluded while generating the Morfessor model. The decom-
posed words are post-processed to produce a cleaner set of sub-
lexical units and boundary markers are added to regenerate full-
words later after recognition. Very short units are avoided as
they are usually difficult to recognize and also could harm the
overall WER with more insertion errors [30, 31]. To generate
N -gram backoff sub-lexical LMs, different hybrid vocabular-
ies are selected, where top-most 5k full-word forms are pre-
served. For OMTP system, two different domain specific lan-
guage models are selected for interpolation. The first language
model consists of largely BN domain, where as the second lan-
guage model consists of lectures domain. It is observed that
interpolated language model performed better than standalone
lectures domain language model in terms of perplexity and thus,
is used during recognition. 5-gram backoff LMs are created for
all the systems, but for Spanish. Alternatively 4-gram Max-
imum Entropy (ME) language models are created along with
language model adaptation. The language model adaptation
uses MAP principle [32]. In adaptation, the parameters esti-
mated from the across domain data are used as the prior means
to learn the parameters from the in-domain data [33]. Here,

the development data is used as an in-domain data in a super-
vised adaptation. Similarly, the automatic transcriptions gener-
ated from the initial pass are used as an in-domain data in an
un-supervised adaptation [3]. Both the backoff N -gram LMs
and adapted/non-adapted ME language models are linearly in-
terpolated for robust probability estimates.

5. Recognition Results
The recognition systems have a multi-pass setup. After an
initial non-adapted pass, transcriptions are obtained which are
used for the CMLLR-adapted recognition pass. After speaker
adaptation pass, ME language models are used during N -best
list rescoring. N -best (N=5000) list is selected based on the
optimal WER on dev corpus. Alternatively for Portuguese sys-
tem, confusion network based system combination is used to
combine the results of both MFCC and PLP system. As a base-
line EU-Bridge systems, initial baseline WERs are provided by
the Fondazione Bruno Kessler (FBK) research group, Italy. The
description of these baselines are not released by the project
committee.

Recognition results are shown in Table 5. For German BN
system, it is observed that the WERs are better than the OMTP
system. This is mainly due to the presence of spontaneous
speech in OMTP corpus. For all the systems where ME lan-
guage models are used, limited reductions are observed in terms
of perplexity and the same effect is also reflected in WER. MAP
based language model adaptation provided significant gains for
German and Polish tasks in-terms of the WER. MPE trained
acoustic models provided noticeable improvements for Polish
and Spanish tasks. Confusion network combination helped to
achieve significant gains for Portuguese task. The following re-
ductions in WER are achieved in comparison with the project
baselines for the EU-Bridge systems, summarized as : German
LVCSR [eval: ≈ abs: 9.0 %, rel: 43.3%], Polish LVCSR [eval:
≈ abs: 9.0%, rel: 48.9%] and Portuguese LVCSR [eval: ≈ abs:
9.3 %, rel: 33.2 %].

6. Conclusions
Multiple LVCSR systems developed for European languages
across BN and lecture domains for the evaluations of Quaero
and EU-Bridge projects are presented. Acoustic level multi-
lingual features using neural networks, domain dependent lan-
guage modeling, supervised and unsupervised adaptation and
system combination of subsystems were investigated. On the
whole, noticeable improvements are obtained mainly due to
the use of multilingual features, MPE trained acoustic mod-
els, open-vocabulary language models, language model adap-
tation and confusion network based system combination. For
morphologically rich languages like German and Polish, signif-
icant reductions in WER are achieved using open vocabulary
language modeling along with the language model adaptation.
The RWTH LVCSR systems for the languages described in this
work all ranked first in both the Quaero 2013 and EU-Bridge
2014 evaluation campaigns.
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