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Abstract 

 

Since language model (LM) is very sensitive 
to domain mismatch between training and test 
data, using a group of techniques to adapt a 
big LM to specific domains is quite helpful. In 
this paper, we, benefit from salient perfor-
mance of recurrent neural network to improve 
domain adapted LM. In this way, we first ap-
ply an automatic data selection procedure on a 
limited amount of in-domain data in order to 
enrich the training set. After that, we train a 
domain specific N-gram LM and improve it by 
using recurrent neural network language mod-
el trained on limited in-domain data. Experi-
ments in the framework of EUBRIDGE 1 
project on weather forecast dataset show that 
the automatic data selection procedure im-
proves the word error rate around 2% and 
RNNLM makes additional improvement over 
0.3%. 

Keywords: Language model, automatic data se-
lection, neural network language model, speech 
recognition 

1 Introduction 

Language models are widely used in different 
applications such as automatic speech 
recognition (ASR), machine translation; spell 
checking, handwriting detection etc. Basically, a 
language model tries to predict the next word in 
a sentence by considering a history of previous 
words. To provide this history, the language 
model needs to be trained on a large set of texts. 

                                                 
1  This work has been partially founded by the European 

project EUBRIDGE, under the contract FP7-287658 

Generally, the larger train set the better language 
model.  

A main issue in language modeling arises 
from data sparseness in training set. It means that 
in a large training set, many of the n-grams2 are 
very rare and, consequently, their probabilities 
are very small. Katz (1987) tried to overcome 
this problem by proposing back-off technique. In 
it, the probabilities of rare n-grams are estimated 
through linear interpolation of the probabilities 
of the lower order n-grams.  

Discounting methods such as Witten-Bell es-
timate (Witten and Bell, 1991), absolute dis-
counting (Ney and Essen, 1991), Kneser-Ney 
method (Kneser and Ney, 1995) and modified 
Kneser-Ney (Chen and Goodman, 1999) allow 
estimating back-off coefficients.  

Recently, using neural network language 
model (NNLM) has been become of interest be-
cause it results more generalization in compari-
son to N-gram models. In NNLM, the words are 
represented in a continuous space. The idea of 
representing words in a continuous space for 
language modeling was started by Bengio 
(2003). It was followed by Schwenk (2007) who 
applied neural network for language modeling in 
large scale vocabulary speech recognition and 
obtained a noticeable improvement in word error 
rate. Mikolov (2010) pursued this way and used 
recurrent neural network for language modeling 
(RNNLM). The advantage of RNNLM on feed 
forward neural network, which was used by 
Bengio (2003) and Schwenk (2007) is that 
RNNLM can consider an arbitrary number of 
preceding words to estimate the probability of 

                                                 
2 Sequence of n words (usually 2, 3 or 4 words). By n-gram 

(with small “n”) we refer to an n-word sequence and by 
N-gram (with capital “N”) we refer to a language model 
based on n-grams 
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next word, while, feed forward NNLM can only 
see a fixed number of preceding words. Thanks 
to positive performance of RNNLM toolbox de-
veloped by Mikolov (2011), we use this, in our 
specific task which is weather forecast transcrip-
tion in the framework of EUBRIDGE project.  

In addition to data sparseness, the performance 
of language model is affected by mismatch be-
tween training and test data. This leads to reduc-
tion of language model accuracy. The problem is 
that it is not always easy to collect sufficient 
amount of related data in order to train a specif-
ic-domain LM. Therefore, research on LM do-
main adaptation, as well as automatic selection 
of auxiliary text data is still of large interest. 

There are methods which try to adapt a big 
language model to a limited amount of in-
domain data such as Latent Semantic Analysis 
(Bellegarda, 1988), Mixture (Foster, 2007), 
Minimum Discrimination information (Federico, 
1999) and Lazy MDI (Ruiz, 2012). Another 
group of methods try to automatically retrieve 
auxiliary documents from text resources such as 
Internet. Among them, we are interested in the 
ones reported in (Maskey, 2009) and (Falavigna, 
2012) which are based on information retrieval 
measures such as LM perplexity and Term 
Frequency Inverse Document Frequency (TF-
IDF). 

This paper aims at transcribing a weather fore-
cast speech corpus consisting of audio recordings 
that are divided into development and test sets. 
In addition, a small text corpus of weather fore-
cast has been given within EUBRIDGE project. 
We use this corpus as in-domain data. In this 
way, we first utilize an automatic data selection 
procedure to collect more an auxiliary data set. 
Then, we train an N-gram language model on the 
selected data and decode the test audio recording. 
For each audio, an n-best list is produced which 
is then processed and re-ranked by means of a 
neural network language model. We show the N-
gram which is trained on the automatically se-
lected data is around 2% (in terms of word error 
rate) better than the original one and neural net-
work language model improves it up to 0.3%.  

In Section 2 and 3, we briefly describe Neural 
Network Language Model (NNLM) and Recur-
rent NNLM, respectively. Then, in section 4 we 
describe the process of preparing data and also 
the experiments which are confirmed by perplex-
ity and WER results. Finally, Section 5 con-
cludes the paper. 

2 Neural Network Language Model 
(NNLM)  

In NNLM, a word is represented by a |V|-
dimensional vector of 0s and 1s. |V| is the size of 
vocabulary. In vectorwi that represents ith word in 
the vocabulary, all the elements are zero except 
ith element which is 1 (see Figure 1). For a 4-
gram NNLM, three vectors are concatenated and 
given to the input layer. Thus, the input vector 
would be 3x|V|-dimensional and the input layer 
has the same number of neurons.  

Usually there is a projection layer with linear 
activation function which reduces the dimension 
of input vectors and maps them into a continuous 
space. The output of the projection layer is given 
to a hidden layer with nonlinear activation func-
tion (sigmoid, hyperbolic tangent etc). The out-
put of hidden layer is then given to the output 
layer which has |V| neurons for |V| candidate 
words. jth neuron in this layer computes the prob-
ability of observing jth word after three previous 
words (in 4-gram NNLM). The activation func-
tion that is used in this layer is a softmax func-
tion which guarantees that the sum of all proba-
bilities is 1 and each probability is between zero 
and 1 (Schwenk, 2007). 
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Figure 1: Neural network LM 
 

The computations that are needed for each 
layer are as follows: 
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dj is the output of jth neuron in projection 

layer. U and V are the weight matrices from pro-
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jection to hidden and from hidden to output lay-
ers, respectively. b and k are the bias vectors of 
hidden and output layers, respectively. oi shows 
the output of ith output neuron. The training pro-
cedure is done using a back-propagation algo-
rithm (Schwenk, 2007). 

3 Recurrent Neural Network Language 
Model (RNNLM) 

Instead of projection layer, in RNNLM, there are 
recursive arcs in hidden layer which connect the 
outputs of hidden neurons to their input and work 
as a cache memory for neural network. 
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Figure 2: Recurrent Neural Network LM 

 
For a training set with I unique words, an in-

put layer with I neurons is needed. If the size of 
hidden layer is |H|, then the weight matrix be-
tween input and hidden layers (U) will be I× |H|-
dimensional. Since the hidden neurons are fully 
connected by the recursive arcs, there are 
|H|× |H| additional weighted connections. Fur-
thermore, we need a 1× |H|-dimensional vector to 
store the activation function of each hidden neu-
ron. 

In a class based language model, there are two 
types of output: probability of classes and proba-
bility of words. To implement a class-based 
RNNLM, two sets of neurons in the output layer 
are needed: one for computing the probabilities 
of words and the other for the probabilities of 
classes. From hidden neurons to word output 
neurons there are |H|× |O| connections, which are 
shown in matrix V and from hidden neurons to 
class output neurons there are |H|× |C| connec-
tions which are shown in matrix W (the number 
of classes is equal to |C|).  

Considering this architecture for neural net-
work language model, the formulation of each 
layer should be changed as follows:  

[ ]TTT tstwtx )1()()( −=    (4) 

x(t), that is the input vector of hidden layer is a 
|V|+ |H|-dimensional vector; w(t) is the vector of 
observed word at time t; s(t-1) is the output of 
hidden layer at time t-1 (s(0) can be initialized by 
0.1). The output of the hidden layer is computed 
by:  
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In which, sj(t) is the output of jth hidden neu-
ron. xi(t) is ith element of input vector and Uji in-
dicates the weight of the connection between 
neuron i and neuron j from input to hidden layer, 
respectively. The probability over the classes is 
computed by: 
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In which cl(t) is the output of lth output neuron 
which shows the probability of class l for the 
word which has been observed at time t. wlj is the 
weight of the connection between jth neuron of 
hidden layer and lth neuron of output layer. Using 
a similar equation just by replacing matrix W by 
matrix V, we can compute the probability of each 
word over the classes. 
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Therefore, the overall probability of a word is 
computed by: 

))(,|())(|()|( tscwPtscphistorywp iiii =  (9) 

where i varies from 1 to the number of voca-
bulary size. ci is the class that wi belongs to that. 

 Because of the complexity of this model, it is 
quite hard to use it for huge text corpora. This is 
why, researchers usually use this model on small 
training sets or sometimes they partition a huge 
training set into several small sets and build an 
RNNLM on each partition and make an interpo-
lation between them.  

 In the next experiments we train an RNNLM 
on the small in-domain data and use it to re-score 
the output of the speech decoder. We show that 
this approach improves the WER of the decoder 
up to 0.3%. 

4 Experiments 

As previously mentioned, we are given a quite 
small set of in-domain data, consisting of weath-
er forecast texts (around 1 Million words) and a 
large, out-domain corpus, called GoogleNews 
that includes around 1.6G words. There are two 
major challenges: 
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• First, training a language model on a 
large domain-independent set is very 
costly in time and computation and also 
the resulted model cannot be very effi-
cient in our specific task which is weath-
er forecast transcription.  

• Second, the available domain-specific 
data is to some extent small and the 
model which is trained on it is not gener-
al enough. 

 Two possible solutions are: 
• We can use the available in-domain set 

to select similar sentences from the huge 
out-domain set in order to enrich our in-
domain training set.  

• Or, we can cluster the domain-
independent set using word similarity 
measures. It is expected that the 
sentences from the same cluster belong 
to the same domain. Then, we can train a 
specific language model for each cluster. 

We focus on the first solution and utilize it in 
our experiments. This idea is already proposed 
by Maskey (2009) for re-sampling an auxiliary 
data set for language model adaptation in a 
machine translation task. We use a similar 
approach to collect in-domain sentences from 
GoogleNews. 

4.1 Text Corpora and Language Models 
The source used for generating the documents 
for training a domain-independent LM is 
Google-news. Google-news is an aggregator of 
news provided and operated by Google, that 
collects news from many different sources, in 
different languages, and each group of articles 
consists of similar contents. We download daily 
news from this site, filter-out useless tags and 
collect texts. Google-news data is grouped into 7 
broad domains (such as economy, sports, 
science, technology, etc). After cleaning, 
removing double lines and application of a text 
normalization procedure, the corpus results into 
about 5.7M of documents, or a total of about 
1.6G of words. The average number of words per 
document is 272 (refer to (Girardi, 2007) for 
details about the web document retrieval process 
applied in this work). 

On this data we trained a 4-gram back-off LM 
using the modified shift beta smoothing method 
as supplied by the IRSTLM toolkit (Federico, 
2008). The LM results into about 1.6M 
unigrams, 73M bigrams, 120M 3-grams and 
195M 4-grams. The LM is used to compile a 
static Finite State Network (FSN) which includes 

LM probabilities and lexicon for two ASR 
decoding passes. In the following we will refer to 
this LM as GN4gr-ALL. 

Within the EUBRIDGE project we were also 
given a set of in-domain text data, specifically 
around 1M words related to weather reports 
published on the BBC web site, that was first 
used to train a corresponding 4-gram LM (in the 
following we will call it IN4gr-1MW).Then, with 
the latter LM we automatically select, using 
perplexity as similarity measure, from the whole 
Google-news database an auxiliary corpus of 
about 100M words. On this corpus we trained a 
corresponding 4-gram LM and we adapted it to 
the weather domain using the 1MW in-domain 
corpus (as adaptation data) and LM-mixture (as 
adaptation method). The resulting adapted LM 
contains about 278K unigrams, 9.4M bigrams, 
7.9M 3-grams and 9.5M 4-grams. In the 
following we will refer to it as IN4gr-100MW. 

Using the last language model (IN4gr-
100MW) and a pre-trained acoustic model which 
is described in the next subsection we extract the 
1000-best list from the decoder and re-score this 
list using a recurrent neural network language 
model (RNNLM).  

Before that, we need to investigate different 
types of RNNLM with different configuration in 
order to find the best one for our specific task. In 
this way, we trained RNNLMs with 250, 300, 
350, 400, 450, 500 hidden neurons and 200, 300, 
500, 600, 1000 and 8000 classes on the 1MW in-
domain data. Figure 4 compares the perplexity of 
these models on a development set consisting of 
12K words which is completely isolated from the 
test set. 

 

 
 
Figure 3. Perplexity of different RNNLMs on devel-

opment data 
 

As it can be seen from Figure 4, by increasing 
the number of classes the performance of 
RNNLM improves. For example, the best three 
RNNLMs are the ones with: H350C8000, 
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H450C1000 and H300C1000 (exp.  
rnnlmH300C1000 is an RNNLM with 300 hid-
den neurons and 1000 classes). 

In accordance with Mikolov (2011), RNNLM 
works better when it is interpolated with an N-
gram. Thus, we train a 4-gram language model 
based on Kneser-Ney smoothing method using 
SRI toolkit (Stolcke, 2002) and interpolate it 
with the best RNNLMs by different weights 
(lambda). Figure 5 shows the result of these in-
terpolations. 

 

 
 
Figure 4. Interpolation of RNNLM scores and 4-gram 

scores 
 

When lambda is zero, just N-gram score has 
been considered and when lambda is 1, just the 
score of RNNLM is used. It is seen that 
interpolation of N-gram and RNNLM improves 
the performance of the system. Correspondingly, 
we see that rnnlmH350C8000 and 
rnnlmH450C1000 show the highest performance 
in interpolation with IN4grKN-1MW. In 
following, we will use the latter to re-score the n-
best list obtained from decoder. 

4.2 Generation of N-best Lists 
As previously mentioned we used the RNNLM, 
trained on 1MW in-domain set of data, to re-
score n-best lists produced during ASR 
decoding. Details on both acoustic model 
training and ASR decoding process can be found 
in (Falavigna, 2012). In short for this work, 
speech segments to transcribe have been 
manually detected and labeled in terms of 
speaker names (i.e. no automatic speech 
segmentation and speaker diarization procedures 
have been applied). 

In both first and second decoding passes the 
system uses continuous density Hidden Markov 
Models (HMMs) and a static network embedding 
the probabilities of the baseline LM. A frame 
synchronous Viterbi beam-search is used to find 
the most likely word sequence corresponding to 

each speech segment. In addition, in the second 
decoding pass the system generates a word graph 
for each speech segment. To do this, all of the 
word hypotheses that survive inside the trellis 
during Viterbi beam search are saved in a word 
lattice containing the following information: 
initial word state in the trellis, final word state in 
the trellis, related time instants and word log-
likelihood. From this data structure and given the 
LM used in the recognition steps, WGs are built 
with separate acoustic likelihood and LM 
probabilities associated to word transitions. To 
increase the recombination of paths inside the 
trellis and consequently the densities of the WGs, 
the so called word pair approximation is applied. 
In this way the resulting graph error rate was 
estimated to be around 1/3 of the corresponding 
WER. 

The best word sequences generated in the 
second decoding pass are used to evaluate the 
baseline performance. Instead, the corresponding 
word graphs are used to generate lists of 1000 
sentences each. To do this a stack decoding 
algorithm is employed (Hart, 1972), where the 
score of each partial theory is given by summing 
the forward score of the theory itself with the 
total backward score in the final state of the same 
theory (i.e. the look-ahead function used in the 
algorithm is the total backward probability 
associated to the final state of the given theory). 
Finally, each 1000-best list is re-scored using the 
RNNLM trained on 1MW in-domain text data 
set. Note that in this latter decoding step, 
acoustic probabilities remain unchanged, i.e. the 
latter decoding step implements a pure linguistic 
rescoring. 

4.3 Speech Recognition Results 
An overview of the experiments has been given 
in Figure 5. The first set of results is obtained by 
using GN4gr-ALL language model which is 
trained on whole Google-news data. Then, a 
small N-gram (IN4gr-100MW) is trained on the 
in-domain data that is used in the procedure of 
automatic data selection (see section 4.1). 
Utilizing the resulted data set, a bigger model 
(IN4gr-100MW) is trained and adapted to the in-
domain data.  

Thus, the second and third set of results is 
obtained by using IN4gr-1MW and IN4gr-
100MW along with the decoder. In order to 
improve the final results, we use 
rnnlmH450C1000 which is trained on in-domain 
data to re-score the 1000-best list extracted from 
previous decoding phase. 
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Table 1. compares the WER resulted from us-
ing these language models in the decoding phase. 
It can be seen that the in-domain language model 
which is trained on the small set of in-domain 
text is dramatically better than the huge out-
domain model. By applying automatic data se-
lection approach and collecting the most useful 
texts from Google-news we obtained 0.3% im-
provement and by utilizing RNNLM for re-
scoring the n-best lists we reach another 0.3% 
improvement in word error rate. 

 
Table 1. %WER with different language models 

(Oracle Error Rate is 9.7%) 
 

Language model Development set Test set 

GN4gr-ALL 16.2 15.1 
IN4gr-1MW 14.3 12.8 
IN4gr-100MW 14.0 12.6 
0.5*IN4gr-100MW + 
0.5*rnnlmH450C1000 13.7 12.3 

 
Although it’s not a salient improvement from 

the third to fourth row of the table, we should 
notice that the RNNLM model has re-scored an 
N-best list, which in the best conditions, it gives 
9.7% WER. That is, if we ideally select the best 
sentences from these n-best lists we cannot reach 
better result than 9.7%.   

5 Conclusion 

Given a small set of in-domain data and a huge 
out-domain corpus, we proposed a thorough sys-
tem which applies an automatic data selection 
approach to train a general in-domain language 
model. In addition, we used a continuous space 
language model to improve the generality of the 
model and consequently to improve the accuracy 
of ASR.  

In future, we will benefit from RNNLM in the 
procedure of data selection. That is, instead of 
evaluation of candidate sentences using N-gram, 
we will rank them using RNNLM.  

Moreover, it would be worthwhile to explore 
the performance of a group of small RNNLM on 
the selected data rather than a single N-gram 
LM. 
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