
Pass-code: 23X-D3C4C9F6A6

Improving Language Model Adaptation using Automatic Data Selec-
tion and Neural Network

Shahab Jalalvand
HLT research unit, FBK, 38123 Povo (TN), Italy

jalalvand@fbk.eu

Abstract

Since language model (LM) is very sensitive
to domain mismatch between training and test
data, using a group of techniques to adapt a
big LM to specific domains is quite helpful. In
this paper, we, benefit from salient perfor-
mance of recurrent neural network to improve
domain adapted LM. In this way, we first ap-
ply an automatic data selection procedure on a
limited amount of in-domain data in order to
enrich the training set. After that, we train a
domain specific N-gram LM and improve it by
using recurrent neural network language mod-
el trained on limited in-domain data. Experi-
ments in the framework of EUBRIDGE 1
project on weather forecast dataset show that
the automatic data selection procedure im-
proves the word error rate around 2% and
RNNLM makes additional improvement over
0.3%.

Keywords: Language model, automatic data se-
lection, neural network language model, speech
recognition

1 Introduction

Language models are widely used in different
applications such as automatic speech
recognition (ASR), machine translation; spell
checking, handwriting detection etc. Basically, a
language model tries to predict the next word in
a sentence by considering a history of previous
words. To provide this history, the language
model needs to be trained on a large set of texts.

1 This work has been partially founded by the European

project EUBRIDGE, under the contract FP7-287658

Generally, the larger train set the better language
model.

A main issue in language modeling arises
from data sparseness in training set. It means that
in a large training set, many of the n-grams2 are
very rare and, consequently, their probabilities
are very small. Katz (1987) tried to overcome
this problem by proposing back-off technique. In
it, the probabilities of rare n-grams are estimated
through linear interpolation of the probabilities
of the lower order n-grams.

Discounting methods such as Witten-Bell es-
timate (Witten and Bell, 1991), absolute dis-
counting (Ney and Essen, 1991), Kneser-Ney
method (Kneser and Ney, 1995) and modified
Kneser-Ney (Chen and Goodman, 1999) allow
estimating back-off coefficients.

Recently, using neural network language
model (NNLM) has been become of interest be-
cause it results more generalization in compari-
son to N-gram models. In NNLM, the words are
represented in a continuous space. The idea of
representing words in a continuous space for
language modeling was started by Bengio
(2003). It was followed by Schwenk (2007) who
applied neural network for language modeling in
large scale vocabulary speech recognition and
obtained a noticeable improvement in word error
rate. Mikolov (2010) pursued this way and used
recurrent neural network for language modeling
(RNNLM). The advantage of RNNLM on feed
forward neural network, which was used by
Bengio (2003) and Schwenk (2007) is that
RNNLM can consider an arbitrary number of
preceding words to estimate the probability of

2 Sequence of n words (usually 2, 3 or 4 words). By n-gram

(with small “n”) we refer to an n-word sequence and by
N-gram (with capital “N”) we refer to a language model
based on n-grams

mailto:jalalvand@fbk.eu

Pass-code: 23X-D3C4C9F6A6

next word, while, feed forward NNLM can only
see a fixed number of preceding words. Thanks
to positive performance of RNNLM toolbox de-
veloped by Mikolov (2011), we use this, in our
specific task which is weather forecast transcrip-
tion in the framework of EUBRIDGE project.

In addition to data sparseness, the performance
of language model is affected by mismatch be-
tween training and test data. This leads to reduc-
tion of language model accuracy. The problem is
that it is not always easy to collect sufficient
amount of related data in order to train a specif-
ic-domain LM. Therefore, research on LM do-
main adaptation, as well as automatic selection
of auxiliary text data is still of large interest.

There are methods which try to adapt a big
language model to a limited amount of in-
domain data such as Latent Semantic Analysis
(Bellegarda, 1988), Mixture (Foster, 2007),
Minimum Discrimination information (Federico,
1999) and Lazy MDI (Ruiz, 2012). Another
group of methods try to automatically retrieve
auxiliary documents from text resources such as
Internet. Among them, we are interested in the
ones reported in (Maskey, 2009) and (Falavigna,
2012) which are based on information retrieval
measures such as LM perplexity and Term
Frequency Inverse Document Frequency (TF-
IDF).

This paper aims at transcribing a weather fore-
cast speech corpus consisting of audio recordings
that are divided into development and test sets.
In addition, a small text corpus of weather fore-
cast has been given within EUBRIDGE project.
We use this corpus as in-domain data. In this
way, we first utilize an automatic data selection
procedure to collect more an auxiliary data set.
Then, we train an N-gram language model on the
selected data and decode the test audio recording.
For each audio, an n-best list is produced which
is then processed and re-ranked by means of a
neural network language model. We show the N-
gram which is trained on the automatically se-
lected data is around 2% (in terms of word error
rate) better than the original one and neural net-
work language model improves it up to 0.3%.

In Section 2 and 3, we briefly describe Neural
Network Language Model (NNLM) and Recur-
rent NNLM, respectively. Then, in section 4 we
describe the process of preparing data and also
the experiments which are confirmed by perplex-
ity and WER results. Finally, Section 5 con-
cludes the paper.

2 Neural Network Language Model
(NNLM)

In NNLM, a word is represented by a |V|-
dimensional vector of 0s and 1s. |V| is the size of
vocabulary. In vectorwi that represents ith word in
the vocabulary, all the elements are zero except
ith element which is 1 (see Figure 1). For a 4-
gram NNLM, three vectors are concatenated and
given to the input layer. Thus, the input vector
would be 3x|V|-dimensional and the input layer
has the same number of neurons.

Usually there is a projection layer with linear
activation function which reduces the dimension
of input vectors and maps them into a continuous
space. The output of the projection layer is given
to a hidden layer with nonlinear activation func-
tion (sigmoid, hyperbolic tangent etc). The out-
put of hidden layer is then given to the output
layer which has |V| neurons for |V| candidate
words. jth neuron in this layer computes the prob-
ability of observing jth word after three previous
words (in 4-gram NNLM). The activation func-
tion that is used in this layer is a softmax func-
tion which guarantees that the sum of all proba-
bilities is 1 and each probability is between zero
and 1 (Schwenk, 2007).

.

.

.

.

.

.

.

.

Projection layer
(linear activation function)

Hidden layer
(non-linear activation function)

Output layer
(softmax finction)

Input layer

1+− njw

2+− njw

1−jw

)|1(jj hwP =

)|(jj hiwP =

)|(jj hVwP =

0
.
.
0
1
0
.
0

0
.
0
1
0
.
.
0

0
.
.
.
0
1
0
.
0

H

P

P

P

U V

Figure 1: Neural network LM

The computations that are needed for each
layer are as follows:

,,...,1.tanh HjbUcd
l

jjllj =∀

+= ∑ (1)

,,...,1. NikVdo
j

iijji =∀+= ∑ (2)

,,...,1
1

Ni
e

ep N

l
o

o

i
i

i

=∀=
∑ =

 (3)

dj is the output of jth neuron in projection

layer. U and V are the weight matrices from pro-

Pass-code: 23X-D3C4C9F6A6

jection to hidden and from hidden to output lay-
ers, respectively. b and k are the bias vectors of
hidden and output layers, respectively. oi shows
the output of ith output neuron. The training pro-
cedure is done using a back-propagation algo-
rithm (Schwenk, 2007).

3 Recurrent Neural Network Language
Model (RNNLM)

Instead of projection layer, in RNNLM, there are
recursive arcs in hidden layer which connect the
outputs of hidden neurons to their input and work
as a cache memory for neural network.

HI

O

H×1

][OHV ×

HH ×

][HIU ×

C
][CHW ×

Activation function

Input layer

Hidden
layer

Output layer

w(t)

s(t)
y(t)

c(t)

Figure 2: Recurrent Neural Network LM

For a training set with I unique words, an in-

put layer with I neurons is needed. If the size of
hidden layer is |H|, then the weight matrix be-
tween input and hidden layers (U) will be I× |H|-
dimensional. Since the hidden neurons are fully
connected by the recursive arcs, there are
|H|× |H| additional weighted connections. Fur-
thermore, we need a 1× |H|-dimensional vector to
store the activation function of each hidden neu-
ron.

In a class based language model, there are two
types of output: probability of classes and proba-
bility of words. To implement a class-based
RNNLM, two sets of neurons in the output layer
are needed: one for computing the probabilities
of words and the other for the probabilities of
classes. From hidden neurons to word output
neurons there are |H|× |O| connections, which are
shown in matrix V and from hidden neurons to
class output neurons there are |H|× |C| connec-
tions which are shown in matrix W (the number
of classes is equal to |C|).

Considering this architecture for neural net-
work language model, the formulation of each
layer should be changed as follows:

[]TTT tstwtx)1()()(−= (4)

x(t), that is the input vector of hidden layer is a
|V|+ |H|-dimensional vector; w(t) is the vector of
observed word at time t; s(t-1) is the output of
hidden layer at time t-1 (s(0) can be initialized by
0.1). The output of the hidden layer is computed
by:

HjUtxts
i

jiij ,...,1).(tanh)(=∀

= ∑ (5)

In which, sj(t) is the output of jth hidden neu-
ron. xi(t) is ith element of input vector and Uji in-
dicates the weight of the connection between
neuron i and neuron j from input to hidden layer,
respectively. The probability over the classes is
computed by:

= ∑ lj

j
jl WtsSOFTMAXtc .)()(

 (7)

In which cl(t) is the output of lth output neuron
which shows the probability of class l for the
word which has been observed at time t. wlj is the
weight of the connection between jth neuron of
hidden layer and lth neuron of output layer. Using
a similar equation just by replacing matrix W by
matrix V, we can compute the probability of each
word over the classes.

= ∑ cj

j
jc VtsSOFTMAXty .)()((8)

Therefore, the overall probability of a word is
computed by:

))(,|())(|()|(tscwPtscphistorywp iiii = (9)

where i varies from 1 to the number of voca-
bulary size. ci is the class that wi belongs to that.

 Because of the complexity of this model, it is
quite hard to use it for huge text corpora. This is
why, researchers usually use this model on small
training sets or sometimes they partition a huge
training set into several small sets and build an
RNNLM on each partition and make an interpo-
lation between them.

 In the next experiments we train an RNNLM
on the small in-domain data and use it to re-score
the output of the speech decoder. We show that
this approach improves the WER of the decoder
up to 0.3%.

4 Experiments

As previously mentioned, we are given a quite
small set of in-domain data, consisting of weath-
er forecast texts (around 1 Million words) and a
large, out-domain corpus, called GoogleNews
that includes around 1.6G words. There are two
major challenges:

Pass-code: 23X-D3C4C9F6A6

• First, training a language model on a
large domain-independent set is very
costly in time and computation and also
the resulted model cannot be very effi-
cient in our specific task which is weath-
er forecast transcription.

• Second, the available domain-specific
data is to some extent small and the
model which is trained on it is not gener-
al enough.

 Two possible solutions are:
• We can use the available in-domain set

to select similar sentences from the huge
out-domain set in order to enrich our in-
domain training set.

• Or, we can cluster the domain-
independent set using word similarity
measures. It is expected that the
sentences from the same cluster belong
to the same domain. Then, we can train a
specific language model for each cluster.

We focus on the first solution and utilize it in
our experiments. This idea is already proposed
by Maskey (2009) for re-sampling an auxiliary
data set for language model adaptation in a
machine translation task. We use a similar
approach to collect in-domain sentences from
GoogleNews.

4.1 Text Corpora and Language Models
The source used for generating the documents
for training a domain-independent LM is
Google-news. Google-news is an aggregator of
news provided and operated by Google, that
collects news from many different sources, in
different languages, and each group of articles
consists of similar contents. We download daily
news from this site, filter-out useless tags and
collect texts. Google-news data is grouped into 7
broad domains (such as economy, sports,
science, technology, etc). After cleaning,
removing double lines and application of a text
normalization procedure, the corpus results into
about 5.7M of documents, or a total of about
1.6G of words. The average number of words per
document is 272 (refer to (Girardi, 2007) for
details about the web document retrieval process
applied in this work).

On this data we trained a 4-gram back-off LM
using the modified shift beta smoothing method
as supplied by the IRSTLM toolkit (Federico,
2008). The LM results into about 1.6M
unigrams, 73M bigrams, 120M 3-grams and
195M 4-grams. The LM is used to compile a
static Finite State Network (FSN) which includes

LM probabilities and lexicon for two ASR
decoding passes. In the following we will refer to
this LM as GN4gr-ALL.

Within the EUBRIDGE project we were also
given a set of in-domain text data, specifically
around 1M words related to weather reports
published on the BBC web site, that was first
used to train a corresponding 4-gram LM (in the
following we will call it IN4gr-1MW).Then, with
the latter LM we automatically select, using
perplexity as similarity measure, from the whole
Google-news database an auxiliary corpus of
about 100M words. On this corpus we trained a
corresponding 4-gram LM and we adapted it to
the weather domain using the 1MW in-domain
corpus (as adaptation data) and LM-mixture (as
adaptation method). The resulting adapted LM
contains about 278K unigrams, 9.4M bigrams,
7.9M 3-grams and 9.5M 4-grams. In the
following we will refer to it as IN4gr-100MW.

Using the last language model (IN4gr-
100MW) and a pre-trained acoustic model which
is described in the next subsection we extract the
1000-best list from the decoder and re-score this
list using a recurrent neural network language
model (RNNLM).

Before that, we need to investigate different
types of RNNLM with different configuration in
order to find the best one for our specific task. In
this way, we trained RNNLMs with 250, 300,
350, 400, 450, 500 hidden neurons and 200, 300,
500, 600, 1000 and 8000 classes on the 1MW in-
domain data. Figure 4 compares the perplexity of
these models on a development set consisting of
12K words which is completely isolated from the
test set.

Figure 3. Perplexity of different RNNLMs on devel-

opment data

As it can be seen from Figure 4, by increasing
the number of classes the performance of
RNNLM improves. For example, the best three
RNNLMs are the ones with: H350C8000,

Pass-code: 23X-D3C4C9F6A6

H450C1000 and H300C1000 (exp.
rnnlmH300C1000 is an RNNLM with 300 hid-
den neurons and 1000 classes).

In accordance with Mikolov (2011), RNNLM
works better when it is interpolated with an N-
gram. Thus, we train a 4-gram language model
based on Kneser-Ney smoothing method using
SRI toolkit (Stolcke, 2002) and interpolate it
with the best RNNLMs by different weights
(lambda). Figure 5 shows the result of these in-
terpolations.

Figure 4. Interpolation of RNNLM scores and 4-gram

scores

When lambda is zero, just N-gram score has
been considered and when lambda is 1, just the
score of RNNLM is used. It is seen that
interpolation of N-gram and RNNLM improves
the performance of the system. Correspondingly,
we see that rnnlmH350C8000 and
rnnlmH450C1000 show the highest performance
in interpolation with IN4grKN-1MW. In
following, we will use the latter to re-score the n-
best list obtained from decoder.

4.2 Generation of N-best Lists
As previously mentioned we used the RNNLM,
trained on 1MW in-domain set of data, to re-
score n-best lists produced during ASR
decoding. Details on both acoustic model
training and ASR decoding process can be found
in (Falavigna, 2012). In short for this work,
speech segments to transcribe have been
manually detected and labeled in terms of
speaker names (i.e. no automatic speech
segmentation and speaker diarization procedures
have been applied).

In both first and second decoding passes the
system uses continuous density Hidden Markov
Models (HMMs) and a static network embedding
the probabilities of the baseline LM. A frame
synchronous Viterbi beam-search is used to find
the most likely word sequence corresponding to

each speech segment. In addition, in the second
decoding pass the system generates a word graph
for each speech segment. To do this, all of the
word hypotheses that survive inside the trellis
during Viterbi beam search are saved in a word
lattice containing the following information:
initial word state in the trellis, final word state in
the trellis, related time instants and word log-
likelihood. From this data structure and given the
LM used in the recognition steps, WGs are built
with separate acoustic likelihood and LM
probabilities associated to word transitions. To
increase the recombination of paths inside the
trellis and consequently the densities of the WGs,
the so called word pair approximation is applied.
In this way the resulting graph error rate was
estimated to be around 1/3 of the corresponding
WER.

The best word sequences generated in the
second decoding pass are used to evaluate the
baseline performance. Instead, the corresponding
word graphs are used to generate lists of 1000
sentences each. To do this a stack decoding
algorithm is employed (Hart, 1972), where the
score of each partial theory is given by summing
the forward score of the theory itself with the
total backward score in the final state of the same
theory (i.e. the look-ahead function used in the
algorithm is the total backward probability
associated to the final state of the given theory).
Finally, each 1000-best list is re-scored using the
RNNLM trained on 1MW in-domain text data
set. Note that in this latter decoding step,
acoustic probabilities remain unchanged, i.e. the
latter decoding step implements a pure linguistic
rescoring.

4.3 Speech Recognition Results
An overview of the experiments has been given
in Figure 5. The first set of results is obtained by
using GN4gr-ALL language model which is
trained on whole Google-news data. Then, a
small N-gram (IN4gr-100MW) is trained on the
in-domain data that is used in the procedure of
automatic data selection (see section 4.1).
Utilizing the resulted data set, a bigger model
(IN4gr-100MW) is trained and adapted to the in-
domain data.

Thus, the second and third set of results is
obtained by using IN4gr-1MW and IN4gr-
100MW along with the decoder. In order to
improve the final results, we use
rnnlmH450C1000 which is trained on in-domain
data to re-score the 1000-best list extracted from
previous decoding phase.

Pass-code: 23X-D3C4C9F6A6

Table 1. compares the WER resulted from us-
ing these language models in the decoding phase.
It can be seen that the in-domain language model
which is trained on the small set of in-domain
text is dramatically better than the huge out-
domain model. By applying automatic data se-
lection approach and collecting the most useful
texts from Google-news we obtained 0.3% im-
provement and by utilizing RNNLM for re-
scoring the n-best lists we reach another 0.3%
improvement in word error rate.

Table 1. %WER with different language models

(Oracle Error Rate is 9.7%)

Language model Development set Test set

GN4gr-ALL 16.2 15.1
IN4gr-1MW 14.3 12.8
IN4gr-100MW 14.0 12.6
0.5*IN4gr-100MW +
0.5*rnnlmH450C1000 13.7 12.3

Although it’s not a salient improvement from

the third to fourth row of the table, we should
notice that the RNNLM model has re-scored an
N-best list, which in the best conditions, it gives
9.7% WER. That is, if we ideally select the best
sentences from these n-best lists we cannot reach
better result than 9.7%.

5 Conclusion

Given a small set of in-domain data and a huge
out-domain corpus, we proposed a thorough sys-
tem which applies an automatic data selection
approach to train a general in-domain language
model. In addition, we used a continuous space
language model to improve the generality of the
model and consequently to improve the accuracy
of ASR.

In future, we will benefit from RNNLM in the
procedure of data selection. That is, instead of
evaluation of candidate sentences using N-gram,
we will rank them using RNNLM.

Moreover, it would be worthwhile to explore
the performance of a group of small RNNLM on
the selected data rather than a single N-gram
LM.

Acknowledgments

I would like to express my special thanks of gra-
titude to my supervisor, Daniele Falavigna, who
kindly helped me to do the experiments and write
this paper.

References
Andreas Stolcke. 2002. SRILM - An Extensible Lan-

guage Modeling Toolkit. In Proceedings of the In-
ternational Conference on Statistical Language
Processing, Denver, Colorado.

Christian Girardi. 2007. Htmcleaner: Extracting Rele-
vant Text from Web. 3rd Web as Corpus workshop
(WAC3), Presses Universitaires de Louvain, pp.
141-143.

Daniele Falavigna, Roberto Gretter, Fabio Brugnara,
and Diego Giuliani. 2012. Fbk @ iwslt 2012 - ASR
Track. in Proc. of the International Workshop on
Spoken Language Translation, Hong Kong, HK.

George Foster and Roland Kuhn. 2007. Mixture Mod-
el Adaptation for SMT. In Proceedings of the
Second Workshop on Statistical Machine Transla-
tion, StatMT ’07, pages 128–135, Stroudsburg, PA,
USA. association for Computational Linguistics.

Hermann Ney, Ute Essen. 1991. On Smoothing Tech-
niques for Bigram-based Natural Language Mod-
elling. Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal
Processing ’91, volume 2, pp. 825–829.

Figure 5. An overview of the speech recognition system

Pass-code: 23X-D3C4C9F6A6

Holger Schwenk. 2007. Continuous Space Language
Models. in Computer Speech and Language, vo-
lume 21, pp. 492-518.

Ian H. Witten and Timothy C. Bell. 1991. The Zero-
frequency Problem: Estimating the Probabilities of
Novel Events in Adaptive Text Compression. IEEE
Transactions on Information Theory, 37, pp. 1085–
1094.

Jerome R. Bellegarda. 1998. A Multispan Language
Modeling Frame-work for Large Vocabulary
Speech Recognition. IEEE Transactions on Speech
and Audio Processing, vol. 6, no. 5, pp. 456–467.

Marcello Federico, Nicola Bertoldi, and Mauro Cetto-
lo. 2008. IRSTLM: an Open Source Toolkit for
Handling Large Scale Language Model. in Proc.
Of INTERSPEECH, Brisbane, Australia, pp.
1618–1621

Marcello Federico. 1999. Efficient Language Model
Adaptation Through MDI Estimation. In Proceed-
ings of the 6th European Conference on Speech
Communication and Technology, vol. 4, Budapest,
Hungary, pp. 1583–1586.

Nick Ruiz and Marcello Federico. 2012. MDI Adapta-
tion for the Lazy: Avoiding Normalization in LM
Adaptation for Lecture Translation. In Proceedings
of the International Workshop on Spoken Lan-
guage Translation, Hong Kong, China.

Peter E. Hart. Nils J. Nilsson. Bertram Raphael. 1972.
Correction to A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. SIGART
Newsletter 37: 28–29

Sameer Maskey, Abhinav Sethy. 2009. Resampling
Auxiliary Data for Language Model Adaptation in
Machine Translation for Speech. in ICASSP 2009,
Taiwan

Stanley F. Chen and Jushua Goodman. 1999. An Em-
pirical Study of Smoothing Techniques for Lan-
guage Modeling. Computer Science and Language,
4(13), pp. 359-393.

Tomas Mikolov, Anoop Deoras, Stefan Kombrink,
Lukas Burget, Jan Cernocky. 2011. Empirical
Evaluation and Combination of Advanced Lan-
guage Modeling Techniques. In: Proceedings of the
12th Annual Conference of the International
Speech Communication Association (INTERS-
PEECH 2011). Florence, IT.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Honza Cernocky, Sanjeev Khudanpur. 2010. Re-
current Neural Network Based Language Model.
In Proc. INTERSPEECH2010. pp. 1045–1048

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Jauvin. 2003. A Neural Probabilistic
Language Model. In journal of machine learning
research 3, pp. 1137-1155.

