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Abstract
Posterior-based or bottleneck features derived from neural net-
works trained on out-of-domain data may be successfully ap-
plied to improve speech recognition performance when data is
scarce for the target domain or language. In this paper we com-
bine this approach with the use of a hierarchical deep neural net-
work (DNN) network structure – which we term a multi-level
adaptive network (MLAN) – and the use of multitask learning.
We have applied the technique to cross-lingual speech recog-
nition experiments on recordings of TED talks and European
Parliament sessions in English (source language) and German
(target language). We demonstrate that the proposed method
can lead to improvements over standard methods, even when
the quantity of training data for the target language is relatively
high. When the complete method is applied, we achieve rela-
tive WER reductions of around 13% compared to a monolingual
hybrid DNN baseline.
Index Terms: deep neural network, multilevel adaptive net-
works, cross-lingual speech recognition, TED talks, European
Parliament

1. Introduction
In cross-lingual automatic speech recognition (ASR), models
applied to a target language are enhanced using data from a dif-
ferent source language. In this scenario, the target language is
typically low-resourced: transcribed acoustic training data for
the target language may be difficult or expensive to acquire. The
cross-lingual approach is motivated by the fact that the source
language data, despite being mismatched to the target, may cap-
ture common properties of the acoustics of speech which are
shared across languages, improving the generalisation of the fi-
nal models to unseen speakers and conditions.

Cross-lingual ASR may be viewed as a form of adaptation.
In contrast to domain or speaker adaptation, the major prob-
lem with cross-lingual adaptation arises from the differences in
phone sets between the source and target languages. Even when
a universal phone set is used, it has been found that realisation of
what is ostensibly the same phone still differs across languages
[1]. In this paper, we focus on approaches where source and
target languages are assumed not to share a phone set, which is
probably a valid assumption when a small number of source lan-
guages are used, which are unlikely to provide complete phone
coverage for an arbitrary target language.

Arguably the simplest approach to the problem of cross-
lingual phoneset mismatch is to define a deterministic mapping
between source and target phone sets [2] which may be esti-
mated in a data-driven fashion [3]. However, this hard mapping
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leads to a loss of information from the target language acoustics
that cannot be represented by a single source language phone.
An alternative is to learn a probabilistic mapping, in which the
distribution of target phonemes is expressed over a feature space
comprising source language phone posterior probability esti-
mates, which may be formulated as a product-of-experts model
[4] or as a KL-HMM [5]. Here, the source languages may be
viewed as defining a low-dimensional subspace in which to es-
timate target language models. This is the motivation behind
the work of [6], where a subspace GMM (SGMM) is used, in
which the source languages define a subspace of full covariance
Gaussians.

Neural networks have been used extensively for cross-
lingual ASR. Broadly, the approaches may be categorised as
follows:

• hierarchical approaches, where source and target lan-
guage neural networks are combined into a deep-
structured model, where the top level net trained on the
target acts as a ‘merger MLP’, incorporating outputs
from other nets [7, 8, 9];

• feature space approaches, cross-lingual variants of the
standard tandem [10] or bottleneck [11] techniques,
where neural networks trained on source languages are
used to obtain posterior or bottleneck features, on which
target-language models – typically GMMs – are trained
[12, 13, 14, 15], a technique first used for monolingual
domain adaptation [16]. These approaches may be mo-
tivated as a variant of the subspace approaches defined
above, since the aim is to find a feature space where tar-
get language models may be more readily trained, than
if the raw input features were used. One advantage of
neural networks for this purpose is that the feature space
is implicitly discriminative, unlike the SGMM case;

• regularisation approaches, where target language neural
network training is improved by the use of source lan-
guage data, for example, by better initialisation of the
nets or by weight-sharing.

These approaches have all been shown to be highly effective,
and they are not mutually exclusive. There has been intense
interest in regularisation approaches in recent years, with a fo-
cus on deep neural network (DNN) acoustic models used in a
hybrid configuration [17, 18], directly modelling tied context-
dependent states in the target language. [19] proposed to use
restricted Boltzmann machine (RBM) pre-training on source
languages to improve the initialisation of target-language deep
neural networks (DNNs). [20] trained hybrid DNNs on a se-
quence of target languages, progressively swapping the output
layer with each new language, whilst in [21, 22], samples from
all languages are presented in an interleaved fashion during
training, with the output layer swapped according to the target
language being presented, following earlier work [23] where



context-independent targets were used. The effect is to regu-
larise the networks by sharing lower hidden layers, whilst the
use of entirely different tied-state targets across languages re-
moves the need for phone set mapping. Following [24], this
technique is often called multitask learning, and (to our knowl-
edge) was first applied to ASR in [25].

These approaches differ in the number of layers that are
shared between languages. Often, all but the final hidden layer
are shared; in other approaches, only the output layer may vary
between languages.

A number of recent papers [26, 15, 27] have used mul-
titask learning on a bottleneck network to generate language-
independent features for training a conventional tandem-GMM
system for the target language, thus combining the feature space
and regularisation approaches, demonstrating that language-
independent bottleneck features show consistent improvements
over purely in-language bottleneck features.

We have recently proposed multi-level adaptive networks
(MLAN) for domain adaptation [28, 29]. In the MLAN scheme,
feed-forward DNNs are trained on out-of-domain data and used
to generate features (either bottlenecks or decorrelated posterior
features) for in-domain data. Second-level in-domain nets are
trained on these features augmented with the original acoustic
features. A similar somewhat similar architecture, using shal-
low nets, was independently proposed by [14] for spoken term
detection. We showed that this architecture leads to consis-
tent performance improvements even when the source domain
is poorly matched to the target, as the second-level network im-
plicitly selects which source features are relevant for discrimi-
nation in the target domain.

In this work, we investigate a variant of the MLAN scheme
for cross-lingual ASR, where we compare out-of-language and
multi-lingual bottleneck features as inputs to the second-level
network. The proposed method combines all three of the ap-
proaches listed above, with the use of multitask learning, out-
of-domain features and a hierarchical structure. We investigate
to what extent the approaches are complementary. Unlike much
other work in this area, we investigate the extent to which a
cross-lingual approach is merited when the amount of target
language training data is relatively large: 50 hours of speech.

2. Cross-lingual adaptive networks
The baseline deep neural network systems use a standard feed-
forward architecture. The net may be viewed as a cascade
of feature extractors, followed by a classification layer: this
property motivates the use of intermediate layers for cross-
lingual adaptation. As usual, we trained the DNNs to model
frame posterior probabilities over context-dependent tied states
– unique for each language – using the cross-entropy criterion.
Each frame of training data is assigned a tied-state target with
alignment by a language-dependent HMM-GMM system, from
which the state-clustering is obtained.

The basic structure of the DNNs was held constant across
all experiments: all had 6 wide hidden layers with 2048 hidden
units per layer. The hidden layers use logistic sigmoid nonlin-
earities; the output layers use a softmax function. Where bot-
tleneck features were required, an additional layer of 30 hidden
units was placed before the final hidden layer (this placing fol-
lows experiments in [27]). The inputs to the nets use 11 frames
of acoustic context. Training was performed using the Theano
library [30] on NVIDIA GeForce GTX 690 GPUs.
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Figure 1: Standard MLAN for domain adaptation. Input and
output neurons are shaded grey.

2.1. Multitask training

Multitask learning [24] is the method of training a classifier to
operate on two related tasks using a shared representation, with
the aim of improving generalisation. As implemented in a DNN
framework, this involves sharing lower hidden layers of the net-
work, whilst the output layer (and possibly the higher hidden
layers) are swapped according to different sets of targets that
are presented during learning. The advantages of this approach
are that it effectively increases the amount of training data for
each network; it may be easier for a net that would otherwise
learn poorly from hidden inputs, to have more relevant inputs
selected by the other net; and the other net may improve gener-
alisation by acting as a source of noise.

As we discussed in the introduction, multitask learning was
first applied to cross-lingual ASR by [23] and later used by a
number of authors in various configuration [26, 27, 21, 22, 20].
The phoneset mismatch problem is solved by swapping the
higher layers according to the language of the training sam-
ple presented to the network. From the perspective of a low-
resource target language, the method should allow a shared,
language-independent speech representation to be more ro-
bustly learned in the lower layers due to the increased training
data presented. Also, compared to simply using out-of-domain
neural network features as in the feature-space approaches dis-
cussed, including the target language in the neural network
training ensures that the network retrains the ability to make
phone discriminations not present in the source languages.

2.2. Multi-level adaptive networks

We have previously used the multi-level adaptive networks
scheme (MLAN) for domain adaptation [28, 29]. This com-
bines features derived from an out-of-domain (OOD) neural
network with standard in-domain acoustic features, but then
trains a new in-domain DNN on these inputs. Both levels of
network use 11 frames of context. One advantage of this setup
is that the second-level network is able to perform discrimina-
tive feature selection on the out-of-domain inputs. Additionally,
the scheme may be viewed as a single network with parameter
sharing in the lower layers, due to the fact that an identical first-
level network is repeated across all frames of context input to
the second, which may improve generalisation. Figure 1 illus-
trates the scheme. For simplicity, the diagram does not show the
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Figure 2: Multitask MLAN in its standard implementation. In-
put and output neurons are shaded grey.

use of frame stacking, and the number of hidden layers shown
is purely illustrative.

We now propose to combine the MLAN scheme with mul-
titask learning. In this case, both sets of inputs are used in train-
ing the first-level network, presented in alternate mini-batches.
The second network, used to generate state posteriors for the
decoder, uses only the target language acoustic features, com-
bined with bottleneck features from the first input, a feature vec-
tor size of 69 per frame. The entire procedure is illustrated in
Figure 2. Again, the use of frame stacking is not illustrated and
more hidden layers are used in practice.

2.3. Refinements

We investigate a number of refinements to the basic scheme de-
scribed above. First, we apply speaker adaptive training (SAT)
to the second-level DNNs: as is now standard, the input features
for both training and evaluation data are transformed using a
global CMLLR transform per speaker, estimated using a GMM
trained on the same features. We have previously found [31]
that this technique reduces the word error rate of hybrid DNN
systems significantly when there is plenty of data for each test
speaker.

Second, our standard acoustic features comprise 13 percep-
tual linear prediction (PLP) features with first and second or-
der deltas, normalised to zero mean and unit variance on a per-
speaker basis. However, it is widely known that alternatives
such as filterbank coefficients, not used by GMM systems due
to the feature correlations, are effective as DNN inputs [32]. We
therefore investigated the use of DNNs trained on filterbanks,
using 23 coefficients without dynamic features. Where this was
done, we continued to use PLP features as inputs to the second-
level networks, as they are required for the operation of SAT.
The use of complementary features at different levels may also
lead to gains in its own right.

We also investigate the use of a new state-clustering to ob-
tain targets for training the second level networks, derived from
the input features to this network, rather than from the origi-
nal acoustic features. Intuitively, we would expect this to lead

to improvements due to the DNN being able to concentrate on
modelling variation in the new feature space, rather than vari-
ation that may not be important when the BN features are in-
cluded.

Finally, it is of course possible to apply multitask learning
to the second-level network too. To perform this, we repeat
an identical feature-generation process for the source language,
and use the output as alternating inputs to the second-level nets,
where again, the targets are the source language tied states.

3. Experiments
3.1. ASR task

We were primarily interested to investigate the performance
of the proposed cross-lingual technique when relatively large
amounts of target language data are available. We therefore
chose German as the target language, owing to the ready avail-
ability of training data. For a similar reason, we used English
as the source language.

Our primary experiments were carried out on a test set of
German-language TED talks1 defined by the 2013 International
Workshop on Spoken Language Translation (IWSLT), where a
German evaluation was introduced for the first time. This con-
sists of a series of 10 minute lectures, with typically only one
speaker per lecture. Details of the task can be found in [33].

Our English corpus matched the domain of the target
speech – we used speech data obtained from TED talks in
English available from the TED website. The transcriptions
are crowd-sourced; a lightly supervised technique was used to
match them to the speech. 50 hours of speech data was selected
for training.

For target language training data, it was not possible to use
German TED talks to the unavailability of transcriptions. In-
stead, we used a collection of European Parliament plenary ses-
sions (“Europarl”) available from the Parliament’s website2, for
which approximate transcriptions are available. Again, a lightly
supervised method was used for alignment – for more details
see [34]. We again selected 50 hours of speech for training
(note that this is a smaller quantity than in the previous refer-
ence to give more rapid experiment turnarounds. Due to the
domain mismatch between training data and test set giving the
potential for misleading results, we additionally created an in-
domain German test set, consisting of a further 2 hours of held-
out Europarl data.

3.2. Experimental setup

All systems used 3-state cross-word triphone HMMs. Our base-
line system was trained on 50 hours of German Europarl, using
PLP features with first, second and third temporal derivatives,
projected down to 39 dimensions using an HLDA transform.
The system had 2,800 tied states with 16 Gaussians per state.
For the baseline, we used a two-pass system with SAT, using up
to 32 CMLLR transforms per speaker.

All experiments used a trigram language model trained on
approximately 300M words of news crawl data with a 60k-word
vocabulary. Our lexicon was derived from the lexicon supplied
with the GlobalPhone corpus [35], with missing pronunciations
predicted automatically using the Sequitur G2P tool [36].

1http://www.ted.com
2http://europarl.europa.eu



3.3. Results

We present the results of the various DNN systems on the TED
task in Table 1 and on the matched-domain Europarl task in Ta-
ble 2. Frame error rates (FER) for the hybrid DNNs are shown
for interest, but are not discussed. The trends are broadly similar
for both tasks. Firstly, on the PLP-based systems, it may be ob-
served that the baseline German (de) hybrid DNN system out-
performs the baseline GMM/SAT system, although no speaker
adaptation is used in the DNN system. The use of multitask
training is effective here, leading to relative WER reductions of
5% and 7% on the respective tasks over the in-domain baseline.
The use of the standard MLAN technique, whereby English (en)
tandem features are used as inputs to a second-level network
leads to reductions over the use of purely in-domain features,
in the case of TED, but a deterioration in performance on Eu-
roparl. This may be due to the fact that the English features
are better matched to the TED German domain, as discussed
above, whilst they are trained on no more data than the Ger-
man features. However, when the full multitask MLAN is used
(final row of tables 1 and 2) there are gains over multitask base-
line on both test sets; and larger gains over the standard MLAN
method. Again, the improvement is more pronounced on TED,
where the use of multitask MLAN leads to a 1.5% relative im-
provement over purely multitask learning, and 5.5% over the
standard MLAN technique.

Table 1: Frame and Word Error Rates on TED dev2012 (%)

PLP FBANK
System FER WER FER WER
Baseline de GMM/SAT - 36.6 - -
Baseline de DNN 45.6 36.1 53.7 35.4
multi DNN 44.9 34.3 52.5 33.1
de MLAN - - 40.9 33.9
en MLAN 43.3 35.8 42.9 34.3
multi MLAN 38.7 33.8 39.9 31.8

Table 2: Frame and Word Error Rates on Europarl test set (%)

PLP FBANK
System FER WER FER WER
Baseline de GMM/SAT - 16.6 - -
Baseline de DNN 45.6 15.7 53.7 15.8
multi DNN 44.9 14.6 52.5 14.6
de MLAN - - 40.9 14.6
en MLAN 43.3 16.6 42.9 15.0
multi MLAN 38.7 14.5 39.9 13.9

Second, we discuss the results of hybrid systems trained
on filterbank (“FBANK”) features. Here, the use of multitask
learning again leads to improvements over the monolingual hy-
brid system. The answer as to whether filterbank or PLP fea-
tures are better as the input to the DNN is not consistent be-
tween tasks. The MLAN systems now incorporate filterbank-
based bottleneck features into the second-layer hybrid DNN.
This leads to improvements on both tasks: the German (de) fea-
tures are more useful, which is no surprise considering that the
training sets are the same size. However, it is notable that the
English-MLAN systems outperform the purely German-trained
hybrid system on both test sets. Again, the multitask MLAN
system has the lowest performance on both sets. Overall, the

use of multitask training, the MLAN structure, and the use of
complementary filterbank features gives total relative reduc-
tions of more than 11% on both tasks, over the standard in-
language DNN baseline.

Table 3: Word Error Rates after system refinements

TED dev2012 Europarl
MLAN multi 31.8 13.9
+ SAT 31.1 13.7
+ states 31.0 13.1
+ multi 30.5 12.8

Finally, we show the results of additional refinements to the
system in Table 3, applied to the best-performing system from
the above results. We show the affect of applying SAT to the
MLAN feautures used in the second-level DNN training, using
global transforms estimated for each training and test speaker.
Note that we used block diagonal transforms, independently
transforming the bottleneck and PLP components: we have
found this necessary for the transforms to be well-conditioned.
As might be expected due to the larger quantity of adaptation
data per test speaker for the TED task, it benefits from adapta-
tion more than Europarl. There is additional gain from moving
to a new state tying obtained from the new features. This ap-
pears to give greater benefit to Europarl, which may be because
it gives a closer fit to the training data which therefore gives less
benefit to the mismatched TED domain. Interestingly, there is
further benefit to applying multitask training a second time to
the second-level network: this gives relative improvements of
around 2% on both tasks. Stripping out the effect of SAT and
the change in state tying, which we did not apply to the origi-
nal hybrid networks, the final system gives WERs of 31.2% and
13.7%, a net reduction over the hybrid DNNs trained on PLP
features of around 13% relative on both tasks.

4. Conclusions
We have demonstrated that multitask learning may be effec-
tively combined with a hierarchical network structure based on
the MLAN scheme, for cross-lingual ASR. Use of the technique
has enabled us to obtain considerable performance improve-
ments on two German ASR tasks through the use of English
training data, even when 50 hours of German training data is
used.

In future we will investigate whether the first-level bottle-
neck features used as inputs to the second-level network can be
improved further, for example, by experimenting with alterna-
tive acoustic features, and by applying speaker-adaptation on
the input feature space. We also intend to investigates variants
of this technique in a monolingual setting, for speaker adapta-
tion.
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