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Abstract
In this paper, a novel on-line incremental speaker adapta-

tion technique is proposed for real time transcription applica-
tions such as automatic closed-captioning of live TV programs.
Differently from previously proposed methods, our technique
does not operate at utterance level but instead speaker change
detection and clustering as well as speaker adaptation occur
over a short chunk of the incoming audio signal. Incremen-
tal adaptation based on feature space maximum likelihood lin-
ear regression (fMLLR) is conducted w. r. t. a Gaussian mix-
ture model (GMM) modeling the acoustic training data. In-
dividual speakers are represented by fMLLR transforms, and
these transforms are used for speaker clustering and for per-
forming speaker adaptation. Speech recognition experiments
show that the proposed incremental adaptation technique is ef-
fective, 6% relative reduction in word-error-rate (WER) w. r. t.
a non-adaptive baseline system, when it is embedded in a on-
line transcription system applied to transcribe television news
broadcasts.
Index Terms: on-line speaker adaptation, fMLLR, real-time
automatic speech recognition

1. Introduction
There are applications, such as closed-captioning of live TV
programs and a meeting assistant, which require that automati-
cally generated transcripts are delivered with low latency, that is
within a small time interval w. r. t. the moment in which words
are actually uttered [1, 2, 3]. In these applications, the transcrip-
tion system needs to sequentially process the incoming audio
stream and to handle speech from multiple speakers appearing
in casual order. To cope with acoustic variability and improve
recognition performance, techniques developed for on-line in-
cremental speaker adaptation can be applied in combination
with on-line speaker change detection and speaker clustering
[4, 5, 6]. In the approaches investigated so far, the transcrip-
tion system operates on utterance-like units. Speaker change
detection is performed and a cluster label, necessary for speaker
adaptation, is assigned to each incoming utterance. By relying
on cluster labels, it is possible to incrementally enrich speaker
adaptation parameters exploiting all past speaker utterances in
the same cluster.

A Viterbi decoder, using partial traceback [7], can deliver
output progressively during an utterance, with a delay tipically
limited to a few words. A goal of this work was to introduce
adaptation without counteracting this capability. Therefore,
multiple processing of an incoming utterance before perform-
ing the final decoding step, as in [4, 5], is not a viable solution.
To implement incremental adaptation under this tight operat-
ing condition, each incoming utterance is decoded having the

system adapted based only on already seen data [6]. However,
when there is a speaker change, an acoustic mismatch occurs
between the incoming utterance and the adapted system. This
has a negative impact on recognition performance, whose mag-
nitude depends on how often speakers, or acoustic conditions,
alternate in the audio stream and on the length of the utterances.

In this paper, to reduce adaptation and transcription latency,
we propose to operate on small chunks of the audio signal in-
stead of utterances. In this approach, for each new incoming
chunk of the audio signal having a duration of 1 or 2 seconds,
acoustic observations are first normalized by applying an fM-
LLR transformation, selected and estimated for the previous
chunk, and immediately made available to the decoding pro-
cess. Then, the algorithm determines whether the audio chunk
belongs to one of the known speaker clusters or whether a new
cluster must be created. For speaker clustering, we follow the
integrated approach proposed in [6] in which individual speak-
ers are represented by fMLLR transforms, and those transforms
are used for speaker change detection and clustering as well as
for speaker adaptation. Speaker clusters are built up as the audio
progresses, and a new speaker is identified using a set of trans-
forms that represent ”generic speakers” and speakers already
seen. For each individual speaker cluster, incremental adapta-
tion based on fMLLR is conducted w. r. t. a GMM modeling the
training environment [8, 9, 10]. This avoids the need of an esti-
mated transcription of adaptation data and makes the adaptation
process independent from the decoding engine.

In addition to present in detail the proposed technique, the
paper also discusses¡ specific issues related with the usage of
the cepstral mean subtraction in an operating environment in
which an utterance-like segmentation is not appropriate.

The rest of this paper is organized as follows. Section 2
introduces text-independent speaker adaptive acoustic model-
ing based on fMLLR. Incremental speaker clustering and adap-
tation are described in Section 3. Transcription systems are
briefly described in Section 4. Experimental results are pre-
sented in Section 5. Some considerations on the computational
load of the proposed adaptation technique are reported in Sec-
tion 6. Final remarks are reported in Section 7.

2. fMLLR based speaker adaptation
To reduce the acoustic mismatch between training and testing
acoustic conditions, state-of-the-art speech transcription sys-
tems embed acoustic adaptation. In fMLLR based adaptation,
a single transformation matrix and a bias vector are used to lin-
early transform the input acoustic features as follows [11]:

ôt = Aot + b =Wζt
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where W is the extended transformation matrix [b, A] consist-
ing of D row vectors {wi}, each having D + 1 components,
and ζt is the extended observation vector [1, otT ]T at time t.

The affine transformation matrixW is estimated on adapta-
tion data in order to maximize the likelihood of the transformed
acoustic observations w. r. t. the speech recognition models, i.e.
continuous density hidden Markov models (HMMs), assum-
ing a word level transcription of adaptation data [11]. Effec-
tiveness of fMLLR in reducing the acoustic mismatch between
the speech recognition models and the input acoustic data was
proven on a number of different domains [11, 12, 9].

fMLLR offers an efficient and simple way for implement-
ing speaker adaptive acoustic modeling allowing transformation
of the acoustic data of each training and testing speaker in-
stead of transforming acoustic model parameters. In [13, 14] we
proposed a variant of the fMLLR-based speaker adaptive train-
ing in which transformation parameter estimation is carried out,
both during training and testing, w. r. t. a set of “target” models
which are different than the “recognition” models used for per-
forming decoding of the test data. Leveraging on the possibility
that the structure of the target and recognition models can be
determined independently, in [8] we proposed to estimate trans-
formation parameters, both during training and testing, with the
aim of maximizing the likelihood of the transformed acoustic
observations w. r. t. a GMM modeling the whole training data.
With this text-independent variant, on-line adaptation can be
performed without the need of estimating a transcription of the
adaptation data making this variant very appealing when it is
important to achieve computational efficiency and low latency
adaptation [15, 10].

During training, speech segments in the training set are
first clustered by using an agglomerative algorithm based the
Bayesian information criterion (BIC) [16] and then for each
cluster an fMLLR transformation is estimated w. r. t. the GMM
and applied on acoustic observations in the cluster. Each clus-
ter of speech segments can be interpreted as a speaker cluster.
We also experimented by limiting the number of transforma-
tions estimated during training by imposing to 32 the number
of clusters. This number was chosen in order to reduce the
computational load for transformation selection during testing
as it will be described in the following section. In this case,
each cluster of speech segments is supposed to represent group
of speakers. This approach was inspired by the works on lin-
ear vocal tract length normalization presented in [17, 18] where
during training only a small set of fMLLR transformations are
used, each of them trained only on speech segments associated
to a specific warping factor.

3. Speaker clustering and adaptation
In incremental clustering for on-line speech-to-text systems
[19], the clustering decision is made as soon as an audio seg-
ment is received. Being causal, this approach enables low-
latency incremental speaker adaptation. In order to further re-
duce adaptation latency, instead of performing utterance-like
segmentation of the incoming audio stream [5, 6], in this work,
the incoming audio stream is progressively processed in short,
non overlapping, chunks having constant duration, for example
of 1 or 2 seconds.

In [6] an integrated approach to on-line speaker clustering
and adaptation was proposed where individual speakers are rep-
resented by fMLLR transforms, and those transforms are used
for both speaker clustering and adaptation. In this work, we
adopted a similar approach.

3.1. Processing of the audio stream

Each incoming acoustic observation vector is copied in a buffer,
normalized by applying the current fMLLR transformation ma-
trix and delivered immediately to the recognition engine. When
the buffer reaches the specified chunk size:

• Sufficient fMLLR statistics are collected
• A cluster label is assigned to the chunk according to the

selection procedure described below
• A new transformation matrix is estimated for the selected

cluster to be applied to the following chunk

The assumption is that the information in an audio chunk
is enough to reliably perform speaker clustering and that the
acoustic condition in the audio signal does not change too fre-
quently over time so that the possible mismatch introduced by
applying an fMLLR transformation selected on the basis of the
content of the previous audio chunk does not impact too much.
For the first audio chunk, a pre-trained global transformation is
applied.

As a result, the recognition process is performed on nor-
malized data while speaker labeling and gathering of sufficient
statistics make use of the original acoustic observations.

3.2. Speaker change detection and clustering

Given an incoming chunk of the audio signal, the algorithm de-
termines whether the audio chunk belongs to one of the known
clusters of chunks or whether a new cluster must be created,
being each cluster represented by an fMLLR transformation.
Each cluster is assumed being formed by a collection of acous-
tically homogeneous chunks of signal. Ideally, a cluster rep-
resents speech from a speaker uttering under a certain acoustic
condition, so, in the following, for the sake of simplicity, we
will refer to clusters of audio chunks as speaker clusters.

Given the current audio chunk and the pool of fMLLR
transformation matrices {Wp}Pp=1 representing speaker clus-
ters, transformations can be ranked according to the values of
the auxiliary function. To this end, each available transforma-
tion matrix is plugged into the auxiliary function [17, 18]:

Q(Ŵ ,Wp) = β log |Ap| − 1
2

∑D
d=1(w

(p)
d G(d)w

(p)
d
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(p)
d k(d)

T
)

where G(d) and k(d) are the fMLLR sufficient statis-
tics gathered from the current audio chunk [11]. β =∑M

m=1

∑T
t=1 γm(t) is the total occupancy count where γm(t)

is the posterior probability, determined by the ”target” GMM,
of Gaussian component m at time t. The best fitting transfor-
mation matrix is selected for the next processing steps.

Initially, the set of transformations is solely formed by the
32 transformation matrices pre-computed on training data as
specified in Section 2. For the first audio chunk of the incom-
ing audio stream, a new individual speaker profile, as it will
be described later in the next section, is initialized and the set
of available transformation is then enlarged to include the in-
dividual speaker transformation matrix estimated on the initial
audio chunk. For the following audio chunks, if the best fit-
ting transformation corresponds to one of the 32 pre-computed
transformations it means that a new speaker is detected and a
new speaker profile is instantiated for this speaker while if the
best fitting transformation corresponds to an individual speaker
transformation it means that the current chunk contains speech
belonging to an already seen speaker and the corresponding pro-
file needs to be updated based on the current audio chunk con-
tent as described in the next section.
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3.3. Incremental adaptation

As anticipated above, when a new speaker is detected a new
speaker profile is instantiated. A speaker profile consists of fM-
LLR sufficient statistics (Gp, kp and βp) and the corresponding
fMLLR transformation matrix (Wp) [6]. Sufficient statistics are
incrementally collected over time, chunk by chunk, w. r. t. to the
GMM and the transformation matrix re-estimated accordingly.

As only little adaptation data is initially available for a
speaker profile, a transformation matrix can be hardly estimated
reliably. To tackle the problem of unreliable parameter estima-
tion due to sparse adaptation data, smoothing of sufficient statis-
tics [12, 20], maximum a posteriori fMLLR (fMAPLR) [21] and
eigen space fMLLR [22, 23] were proposed in the past. In this
work, we experimented with the two former approaches as fol-
lows.

Smoothing of sufficient statistics, that is Gp, kp and βp, is
achieved by properly initializing sufficient statistics of a new
speaker profile with prior sufficient statistics [20]. Prior suffi-
cient statistics were gathered during acoustic model training for
estimating the 32 pre-computed fMLLR transformations. Suffi-
cient statistics of the selected pre-computed transformation are
properly weighted and used to initialize sufficient statistics of
the new profile. The weight of prior statistics was set to 1000
based on preliminary experiments.

To implement fMAPLR, parameters of the prior distribu-
tion of the parameters of the fMLLR transformation were esti-
mated from the parameters of the 32 pre-computed transforma-
tions [10]. At run time, given this prior distribution and suffi-
cient statistics of a speaker profile, the fMLLR transformation
matrix is estimated through fMAPLR.

4. Transcription system description
In this section the batch transcription system, which processes
in block the input audio stream, is briefly described.

The input audio signal is first divided into homogeneous
non overlapping segments using a start-end point detector
(SEPD) and an acoustic classifier, based on GMMs. Word tran-
scription is then generated in one decoding pass by using a 4-
gram language model. When using speaker adaptively trained
models, before decoding, the obtained labeled speech segments
are grouped by a segment clustering method based on the BIC.
The resulting segmentation and clustering is then exploited to
perform cluster-wise feature normalization.

Acoustic models (AMs) were trained on about 223 hours of
speech data obtained merging the Italian Broadcast News cor-
pus with a corpus made of recordings of speeches delivered in
the Italian Parliament. Three sets of HMMs were trained, in
all cases AMs were state-tied, cross-word, speaker-independent
triphone HMMs. Output probability distributions were mod-
eled by mixtures of Gaussian probability density functions hav-
ing diagonal covariance matrices. A phonetic decision tree was
used for tying states and for defining the context-dependent al-
lophones.

Each audio signal frame is parametrized into a 52-
dimensional observation vector composed of 13 mel frequency
cepstral coefficients plus their first, second and third order time
derivatives. Cepstral mean subtraction (CMS) is performed on
static features on a segment-by-segment basis.

For the first set of AMs, a projection of acoustic feature
space, based on heteroscedastic linear discriminant analysis
(HLDA), is applied to obtain 39-dimensional acoustic obser-
vations. AMs are then trained on these HLDA projected acous-
tic data through a conventional maximum likelihood procedure.
This set of AMs is denoted in the following as Baseline AMs.

The second set of AMs, were speaker adaptively trained as
described below [8, 14, 24]. A GMM with 1024 Gaussian com-
ponents, having a diagonal covariance matrix, is first trained on
the original 52-dimensional observation vectors. Acoustic ob-
servations in each, automatically determined, cluster of speech
segments, are then normalized by applying an affine transfor-
mation estimated w. r. t. the GMM through fMLLR [11]. 3 fM-
LLR iterations were performed. After normalization of training
data, an HLDA transformation is estimated and then applied to
project the set of 52 normalized features into a 39-dimensional
feature space. Triphone HMMs are trained on these normal-
ized, HLDA projected, acoustic features through a conventional
maximum likelihood procedure. This set of AMs is denoted in
the following as fMLLR AMs.

The third set of AMs is trained in similar way as the sec-
ond set but this time the number of automatically determined
clusters of speech segments is limited to 32 as motivated in
Section 2. As a result, during training only 32 fMLLR trans-
formations were estimated, while for the second set of models
more than 4,200 transformations were estimated. This third set
of AMs is denoted in the following as fMLLR cl32 AMs.

A fourgram language model (LM) with a recognition vo-
cabulary of 157K words was employed for decoding. The LM
was trained using an Italian text corpus of 1.2G words mainly
formed of texts from the news domain.

5. Experimental results
Recognition experiments were conducted on a set of 7 Ital-
ian news broadcasts having a total of about 35,900 transcribed
words. Results of batch transcription experiments are reported
in Table 1. The result obtained with the baseline system, 16.7%
WER.

Table 1: Recognition results (WER%) in batch mode.
Baseline fMLLR fMLLR 32cl

No Adaptation 16.7 - -
1 fMLLR Iter - 15.2 15.2
3 fMLLR Iter - 14.5 14.7

When speaker adaptively trained models are used, cluster-
based fMLLR adaptation is performed before decoding by esti-
mating and applying an fMLLR transformation on each speech
segment cluster as described in Section 2. Results show that a
tangible improvement is achieved w. r. t. the baseline. When
using acoustic models trained on training data grouped into
only 32 speech segment clusters, performance slightly decrease
w. r. t. the case in which no limit was imposed during training on
the number of automatically determined speech segment clus-
ters. From Table 1 we can also see that performing 3 fMLLR it-
erations during test, as done during training, leads to significant
improvement w. r. t. performing a single iteration. In on-line
adaptation, however, for computational efficiency, only a single
fMLLR iteration is performed.

Table 2: Recognition results (WER%) by the baseline system
with two different segmentations and several CMS variants.

Cepstral Mean Subtraction
Segment Window

Current Prec. Acausal Causal
BatchSeg 16.7 19.7 16.9 17.7
SEPD 17.2 19.8 17.1 17.7
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To measure the impact of the segmentation and CMS on
performance we conducted a series of experiments by using the
segmentation as obtained by the off-line audio partitioner (de-
noted as BatchSeg) and using the SEPD module alone. Results
achieved using conventional segment based CMS are reported
in the second column of Table 2. It can be noted that best perfor-
mance, 16.7% WER, is achieved when the refined segmentation
is used (row BatchSeg), while using the SEPD module alone
(row SEPD) worsens recognition performance (17.2% WER).
This may be due to the long spurious segments obtained with
the SEPD module alone for which CMS is not well suited. In
fact, the SEPD module is a fast energy-based start-end point de-
tector that detects and removes silence regions, while the batch
segmentation also exploits a classifier to split segments accord-
ing to a male-speech/female-speech/noise/music classification.
In both cases, however, cepstral mean is computed and sub-
tracted on the whole current segment, so that the segment is
available for decoding only after it is fully processed. This con-
figuration is not suited for on-line real time processing. To cope
with this problem we first conducted experiments performing
CMS on the current segment by using the cepstral average es-
timated on the preceding segment. Results, reported in column
Segment Prec. of Table 2, show a tangible decrease of perfor-
mance. Then, we experimented with CMS relaxing the concept
of segment and computing a cepstral mean for each incoming
acoustic observation instead of for each segment. We explored
two approaches. In the first approach, an incoming acoustic ob-
servation is normalized by subtracting a cepstral average com-
puted on a causal window, 5 seconds long, of preceding acoustic
observations (column Window Causal). In the second approach,
an incoming acoustic observation is normalized by subtracting
a cepstral average computed on an acausal window, 1.5 seconds
long, spanning 1 second before and 0.5 seconds after the acous-
tic observation itself (column Window Acausal). From recog-
nition results reported in Table 2 it can be seen that, at the cost
of delaying the delivery of the transcription by 0.5 seconds, we
can obtain recognition results aligned to that obtained with the
segment based CMS, that is 17.1%WER vs. 17.2% WER with
the SEPD segmentation. This result was improved by perform-
ing CMS during training of acoustic models in the same way as
it is performed during testing, that is performing CMS based on
the acausal window: a WER of 16.9% is achieved in this way to
be compared with 17.1% in Table 2. The configuration leading
to this result represents the set up for the on-line experiments
discussed below. In addition, based on the above results with
the baseline AMs, speaker adaptively trained models were also
trained performing CMS based on the acausal window.

Table 3 reports recognition results obtained in on-line mode
in which the SEPD module is in operation and a fixed delay
by 0.5 seconds is introduced for performing CMS based on a
running window spanning 1.5 seconds as specified above. In-
cremental speaker clustering and adaptation is performed on
an audio chunk of a duration 1 or 2 seconds as described in
Section 3. Reported results show that speaker adaptation is ef-
fective in improving the results of the baseline system: from
16.9% WER to 15.9% WER in case of a 1 second audio chunk
and fMLLR 32cl AMs with smoothing of sufficient statistics.
When using AMs trained without imposing any constraint on
the number of speaker clusters during training (column fMLLR)
a slightly worse result is obtained: 16.3% WER. This is in con-
trast with results reported in Table 1 for batch experiments. This
is likely due to an existing bias in favor of fMLLR 32cl AMs in
on-line adaptation as speaker clustering and initialization of fM-
LLR sufficient statistics for a new cluster are based on sufficient
statistics and transformations corresponding to the 32 clusters
of training data. Furthermore, we can note that varying the size

of the audio chunk, from 1 to 2 seconds, does not lead to sig-
nificant performance differences. Finally, the two techniques
for robust estimate of fMLLR transformations with little data
show to be equivalently effective as it results comparing per-
formance reported in columns Smoothing and fMAPLR for the
fMLLR 32cl AMs.

Table 3: Recognition results (WER%) in on-line mode.
Baseline fMLLR 32cl fMLLR 32cl fMLLR

Smoothing fMAPLR Smoothing
No Adap. 16.9 - - -
1 sec - 15.9 16.0 16.3
2 sec - 15.9 15.9 16.3

6. Computational load
The whole adaptation process, including speaker clustering and
incremental adaptation, on a single core of a multicore In-
tel Xeon 2.5Gz processor, takes 27% and 17% of real time
when the input stream is processed in chunks of 1 second or
2 seconds, respectively. These numbers refer to usage of fM-
LLR 32cl models with smoothing of the sufficient statistics.
The computational load introduced by the proposed on-line in-
cremental adaptation approach is therefore compatible with the
requirements of a real time transcription system, especially con-
sidering that nowadays multicore CPUs are commonly used.

7. Conclusions
We have proposed a novel adaptation technique for on-line
incremental speaker clustering and adaptation, which is well
suited for real time transcription applications in which both low
adaptation latency and low computational load are required.

We have built upon our previously developed technique for
text-independent on-line incremental adaptation which was pre-
viously tested only in the context of a telephonic application
for which speaker change detection and clustering were not re-
quired [10]. To cope with speaker change detection and clus-
tering needed for on-line incremental adaptation we relied on
the approach proposed by Breslin at al. [6] in which individ-
ual speakers are represented by fMLLR transforms, and those
transforms are used for both speaker clustering and adaptation.
Our technique, however, differs for three main aspects from
previous works [4, 5, 6]: a) fMLLR transforms are estimated
w. r. t. a GMM avoiding the need of an estimated transcription
of adaptation data. This leads to a text-independent approach
fully decoupled from the decoding engine; b) speaker cluster-
ing as well as speaker adaptation are performed as the audio
progresses, chunk by chunk, avoiding segmentation of the audio
stream into utterance-like units and thus allowing a low adap-
tation latency; c) normalized acoustic data are available to the
decoding process with a delay of only 0.5 seconds, needed for
effective implementation of CMS.

The recognition results achieved in on-line transcription of
television news broadcasts show that the proposed technique is
effective resulting in 6% relative reduction in WER w. r. t. a
non-adaptive baseline system.
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