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Abstract

Recently, a multilingual Multi Layer Perceptron (MLP) train-
ing method was introduced without having to explicitly map the
phonetic units of multiple languages to a common set. This pa-
per further investigates this method using bottleneck (BN) tan-
dem connectionist acoustic modeling for four high-resourced
languages — English, French, German, and Polish. Aiming at
the improvement of already existing high performing automatic
speech recognition (ASR) systems, the multilingual training of
the BN-MLP is extended from short-term to hierarchical long-
term (multi-resolutional RASTA) feature extraction. Further-
more, deeper structures and context-dependent target labels are
also examined. We experimentally demonstrate that a single
state-of-the-art BN feature set can be trained for multiple lan-
guages, which is superior to the monolingual feature set, and
results in significant gains in all the four languages. Study-
ing the scalability of the multilingual BN features, a similar
gain is observed in small (50 hours) and in larger scale (300
hours) ASR experiments regardless of the distribution of the
data amount between the languages. Using deeper structures,
context-dependent targets, and speaker adaptation, the multilin-
gual BN reduces the word error rates by 3–7% relative over the
target language BN features and 25–30% over the conventional
MFCC system.
Index Terms: deep MLP, bottleneck, multilingual, hierarchical,
MRASTA, LVCSR

1. Introduction
With the development of ASR systems for an increasing num-
ber of languages, methods being able to generalize over lan-
guages have particularly growing interest recently. Since manu-
ally transcribed speech data is still a significant cost factor in the
development of Large Vocabulary Continuous Speech Recog-
nition System (LVCSR), the demand to improve the acoustic
models using multilingual resources exists not only for under-
resourced languages.

As neural networks (NN) have become a major compo-
nent of recent Hidden Markov Model (HMM) based ASR tech-
niques, it was observed that MLP based posterior features
possess language independent properties to a certain degree
[1, 2, 3]. Although, the posterior features trained e.g. on English
speech data can significantly improve the pure cepstral based
systems in entirely different languages, like Arabic or Mandarin
[1], usually the NN features trained on the target language re-
sult in better recognition performance [4, 5, 6]. However, the
cross-lingual NNs are shown to be a good initialization before
training NN based features on a new language [7], especially in
a low-resource scenario [8].

The incorporation of MLP based posterior estimation as
additional features into the Gaussian Mixture Model (GMM)
based HMMs, known as tandem approach, was introduced in
[9] and was improved by the bottleneck concept of [10]. The
bottleneck approach can be interpreted as a dimension reduc-
tion method using non-linear discriminant analysis. The bottle-
neck features in general outperform the posterior features, and
are usually concatenated with classical cepstral features result-
ing in lower error rates than the NN features alone.

To exploit resources of multiple languages in acoustic
model training, there is usually a need to unify similar sounds
across different languages. This could be done either in a
knowledge based way, e.g. with phonetic alphabets such as IPA
or SAMPA [7, 11, 12, 13], or by various data driven approaches
[5, 14, 15, 16]. Due to the fact that the available lexicons for
ASR are usually simplified (e.g. by phone folding), mapping
phones of multiple languages on a common set is often ambigu-
ous or inaccurate. However, the training of neural networks on
multiple languages is possible without such a mapping by shar-
ing hidden layers across languages [17]. A similar motivation
can be found in [18], where the factored GMM models of dif-
ferent languages share parameters in a subspace.

In [19] and [6] the approach of [17] was applied to bot-
tleneck features. They showed that the multilingual bottleneck
features outperform the monolingual features, and that the mul-
tilingual features offer more robust cross-lingual generalization
for unseen languages. As [19] pointed out, this method also out-
performed the IPA based phoneme unification approach. Fur-
thermore, [6] demonstrated that the multilingual BN can be
successfully applied to reduce the mismatch between training
and testing acoustical conditions by reusing matched data from
other languages.

This paper extends our previous investigation [6] to the
multilingual BN-MLP approach as follows. First, the multi-
lingual bottleneck MLP training is applied to hierarchical pro-
cessing of long-term, multi resolutional RASTA filter outputs
[20, 21]. Second, the scalability of the language independent
features is explored in large and small scale experiments. Third,
based on the recent success of deep neural networks in hybrid
acoustic modeling [22] and BN features [23, 24], multilingual
7-hidden-layer BN-MLPs are trained on tied-triphone state tar-
gets. We also investigate the effect of introducing language de-
pendent hidden layers after the bottleneck.

The paper is organized as follows: after a short description
of the training and testing corpora of the four languages in Sec-
tion 2, Section 3 gives the details of the feature extraction and
also summarizes the multilingual training of the BN features.
We describe the experimental setup in Section 4 followed by
results in Section 5. The final conclusions are drawn in Sec-
tion 6.
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2. Language resources
The QUAERO project aims at developing LVCSR systems for
European languages to transcribe podcast and broadcast news
data. For our research purpose the following four languages
were selected: French (FR), English (EN), German (GE), and
Polish (PL). The corpus statistics can be found in Table 1. The
acoustic training is mainly based on speech data collected and
transcribed within the project, and only the German corpus con-
tains about 14 hours of additional external audio recordings
downloaded from the web. Thus, the final multilingual BN fea-
tures are trained on ∼800 hours of speech data. For the estima-
tion of language models (LM) various training materials were
used. Beside the in-domain text data provided for all project
partners, the LM data were extended by text resources from the
web by crawling RSS news feeds, web archives, etc. For further
details we refer to [25, 26].

Table 1: Training and testing corpora statistics on four different
languages, the number of phonemes (phn.) in the corresponding
lexicons, and perplexity (PPL) values measured on the develop-
ment sets

Corpus Total # running # phn. lexicon PPLdata [h] words size

FR

Training 317 3.9M
Dev11 2.9 36k 49 200k 131
Eval11 3.1 38k

E
N

Training 232 2.7M
Dev11 3.7 45k 42 150k 130
Eval11 3.3 35k

G
E

Training 142 1.4M
Dev11 3.8 35k 50 300k 250
Eval11 3.1 29k

PL

Training 110 1.0M
Dev11 3.4 28k 40 600k 673
Eval11 3.6 27k

3. Feature extraction
3.1. Cepstral features

From the audio files, vocal tract length normalized (VTLN)
Mel cepstral coefficients (MFCC) are extracted. The factors
for the piecewise linear warping are estimated by language
specific text-independent Gaussian Mixture classifiers (fast-
VTLN). Then nine consecutive frames of the 16-dimensional,
segmentwise mean-and-variance normalized MFCC vectors are
projected by LDA into a 45-dimensional subspace.

3.2. Bottleneck MRASTA features

In this paper the multilingual MLP training (see Section 3.3) is
applied to long-term MLP features. The bottleneck feature ex-
traction pipeline is similar to that in [24] and is based on the
work of [20]. One second trajectory of each critical band is fil-
tered by first and second derivatives of the Gaussian function,
where the standard deviation varies between 8 and 60 ms result-
ing in 12 temporal filters per band. The bottleneck features are
extracted from hierarchical, MLP based processing of the mod-
ulation spectrum [27]. The input of the first MLP contains the
fast modulation part of the MRASTA filtering, whereas the sec-
ond MLP is trained on the slow modulation components and the
BN output of the first MLP. In both cases, the feature vectors fed
into the MLPs are augmented by the logarithm of critical band
energies. In our investigation the bottleneck layers consisted of

60 nodes. The final features are obtained by concatenating LDA
transformed MFCCs with PCA transformed linear output of the
BN layer.

In the experiments where a classical 5-layer BN-MLP is
used, the number of nodes in the hidden layers is fixed to
7000. In the MLPs with deeper structures the size of the non-
bottleneck layers is set to 2000. Using backpropagation algo-
rithm in the mini-batch mode (512 frames), the randomly ini-
tialized, fully connected MLPs are trained according to cross-
entropy criterion, and approximate phoneme or tied-triphone
state posterior probabilities. In the later case, based on our
previous study [24], the output layers are limited to 1500 tar-
get labels. To prevent overfitting and for adjusting the learning
rate parameter, 10% of the training corpus is used for cross-
validation.

3.3. Multilingual training of bottleneck MLPs

In order to extract robust MLP features from multilingual re-
sources, we apply a training method proposed by [17], which
avoids the mapping of phonemes of different languages to a
common set. The raw feature vectors of the multiple languages
are merged, randomized and presented to the MLPs for train-
ing along with the phonetic and language labels. In contrast
to standard MLPs, the network uses language specific softmax
function as output non-linearity, also referred to as interval-
based softmax [19]. Depending on the language-ID of each
feature vector, backpropagation is initiated only from the lan-
guage specific subset of the output. Applying the multilingual
training to BN-MLP [19, 6], the key idea is that up to the bottle-
neck layer the network is shared between the languages, and the
multilingual training forces the net to extract a more language-
independent representation from the input vectors. Fig. 1 shows
the multilingual BN-MLP of one level of the hierarchy with
deep 9-layer bottleneck MLP structure and context-dependent
targets, where language dependent hidden layers after the BN
are also introduced. The motivation behind this idea is that
each language can have its own non-linearity to generate the
posterior estimates from the low-dimensional bottleneck feature
space. The language dependent hidden layer structure corre-
sponds to a special case: it can be also interpreted as a single
weight matrix between the outputs and the last hidden layers
where the language dependent weights show a non-square block
diagonal structure. Therefore, this could be learned by the neu-
ral network directly. However, having n languages, the block
diagonal constraint increases the number of trainable parame-
ters only linearly with n, whereas a fully connected output and
last hidden layers of n languages would result in an n2 increase.
Furthermore, due to the language dependent backpropagation
the introduction of language dependent hidden layers does not
increase the computational cost.

4. Experimental setup
4.1. Acoustic and language modeling

All recognition experiments are carried out with the freely avail-
able RASR decoder [28]. Instead of training the acoustic mod-
els from scratch, an initial alignment generated by previous best
systems are used to estimate the GMM and MLP parameters.
Speaker adapted results are based on Constrained Maximum
Likelihood Linear Regression (CMLLR) [29] with the simple
target model approach [30]. Discriminative training was not
performed.

For each language a 4-gram LM was estimated and
smoothed by the modified Kneser-Ney method. To handle the
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Figure 1: The joint training of deep context-dependent bottle-
neck MLP features on multiple languages (FR, EN, GE, PL).
The different colors indicate different languages, and language
dependent backpropagation from the output layer. The other
parts of the network including the bottleneck layer are shared
between the languages.

high lexical variety of the German language (due to compound-
ing and inflection), an alternative LM containing full-word and
sublexical units was estimated [31]. The lexicon sizes and per-
plexity values of the unpruned LMs are listed in Table 1. For
further details on the LM estimation we also refer to [26, 32].

5. Experimental results
5.1. Small scale experiments

In the first experiments the effect of multilingual BN features
was investigated, assuming similar amount of speech data is
available in all languages. Therefore, about 50 hours from
each corpus were selected. The multilingual BN features are
based on a classical 5-layer MLP structure and trained on the
200 hours of data using phoneme targets. Table 2 compares the
recognition results of classical cepstral features based systems
with tandem systems using either BN trained only on the tar-
get language or BN trained in a multilingual way. As can be
seen, all languages benefit from the multilingual BN features,
although the target language represents only 25% of the data
during the MLP training. The relative improvement compared
to the target language BN features exceeds 5% for English, Ger-
man, French and 2% for Polish.

Table 2: Small-scale speaker-independent recognition results
on Eval11 corpora of four different languages using target lan-
guage or multilingual BN features. The results are in word er-
ror rate (WER).

Language FR EN DE PL
MFCC 25.5 31.7 25.0 18.9

+BNtarget 22.2 26.8 21.3 15.7
+BNmulti 21.1 24.9 20.1 15.4

In order to have a better understanding how important the
presence of other languages during the BN training is, differ-
ent combinations of the languages are tested. According to our
previous investigation [6], the target language data was always
presented to the neural networks. Demonstrating only with the

French recognition setup, Table 3 clearly shows that the target
language BN features can be improved using resources from
any of the other three languages. Furthermore, the more lan-
guages were used the larger the potential improvement became.
Using all languages and training a single bottleneck network,
we were able to end up in a single set of BN features for four
languages.

Table 3: Speaker-independent recognition results (in WER) on
French Eval11 test set using multilingual BN features trained
on different combination of languages

BN trained on

FR +
FR
EN +

FR
DE +

FR
PL +

FR
EN+DE +

FR
EN+PL +

FR
DE+PL +

FR+EN
DE+PL

22.2 21.8 21.6 21.6 21.7 21.7 21.5 21.1

5.2. Large scale experiments

Based on our observation in small scale experiments, in the
following, multilingual BN features were always trained on all
four languages. Since the available data are usually not equally
distributed between the languages, we also investigate the effect
of unbalanced corpus sizes. Using 800 hours of speech data and
phoneme targets, the first three rows of Table 4 show that the rel-
ative improvement, which originates from training BN features
on multiple languages, does not change drastically. Compared
to Table 2, the word error rates are still reduced by more than
5% relative for English and German, while the French and Pol-
ish systems show 3% relative improvement. The previous ex-
periment demonstrated that despite the unbalanced corpus sizes
and larger amount of speech data in all languages, the multi-
lingual BN features are able to extract a more discriminative
speech representation than the monolingual BN.

Table 4: Large-scale speaker-independent recognition results
on Eval11 corpora of four different languages using target lan-
guage or multilingual BN features. The results are in WER.

Language FR EN DE PL
MFCC 23.6 28.6 23.3 18.1

M
L

P
ta

rg
et

s phonemes
+BNtarget 19.3 23.1 19.0 14.5
+BNmulti 18.7 21.3 17.9 14.0

1500
tied-triphone

states

+BNtarget 18.3 21.8 18.4 13.8
+BNmulti 18.1 21.3 17.6 13.9
+deep BNtarget 17.4 20.3 17.3 13.0
+deep BNmulti 17.1 19.7 16.4 12.6

+lang.dep. hidden layer 16.8 19.7 16.2 12.4

Switching from phoneme to 1500 tied-triphone states tar-
gets resulted in 3–5% relative improvement in the monolingual
case (3rd row in Table 4). Training a single BN feature set for
the four languages in the described multilingual way improved
the results only for French and German. The gain is 1–2% rela-
tive over the target BN trained on context-dependent targets. It
is interesting to see, that for English the phoneme based multi-
lingual BN features perform better than the target language BN-
MLP trained on tied-states (2nd column, 3rd and 4th rows), and
that increasing the targets of the multilingual BN does not al-
ways result in better performance (3rd and 5th rows). As a sum-
mary, the multilingual BN clearly outperforms the monolingual
features if phoneme targets are used. Nevertheless the use of
context-dependent targets to train BN features mitigates the ad-
vantage of the multilingual 5-layer BN in speaker-independent
recognition scenario.
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Since the BN features can also benefit from deeper struc-
tures and context-dependent phonetic targets [24], the multilin-
gual bottleneck features are also investigated using more com-
plex MLPs. In our previous study about deep BN features only a
symmetrical MLP structure (three hidden layers before and after
the BN) was used. Therefore, before the multilingual training, it
was first tested on the French recognition task where to place the
bottleneck layer, given a 9-layer MLP with fixed non-bottleneck
hidden layer size of 2000. As Table 5 shows, pushing the BN
closer to the output layer does not have any significant influence
on the recognition error rate, as long as there is at least a single
hidden layer between the output and the BN. The best perfor-
mance was observed on the development set when only a single
hidden layer was used after the BN. However, it resulted only in
an insignificant gain on Eval11 set. In the following, the struc-
ture, which shares five non-bottleneck hidden layers between
the four languages before the BN layer, is used for multilingual
MLP training. A similar MLP is shown in Figure 1. The results
in Table 5 also indicate that taking the principal components
account for 95% of the total variability of the BN features is a
nearly optimal choice for deep BN features as well.

Training monolingual context-dependent (CD) deep BN
features, we observed huge, over 25% relative improvement in
all languages (6th row in Table 4). As can be seen, the deep
multilingual CD-BN features opposed to 5-layer CD-BNmulti

improved the results in each language. This could be ex-
plained by the increased capacity of the MLP to extract the
low-dimensional language-independent speech representation
which can then discriminate between 1500 classes of any of the
four languages. The relative gain over the deep monolingual
BN features is between 2-5%.

The speaker-independent French, Polish, and English sys-
tems show 28%, 31%, 30% relative improvement over the clas-
sical cepstral system, whereas the German ASR performance
is improved by 40% relative. Introducing language dependent
hidden layers could only slightly reduce the error rate.

Table 5: Effect of the place of BN and the PCA size on WER
using deep 9-layer MLP structure. The speaker-independent
recognition performance is measured on Eval11 corpus of the
French task. Bold font indicates the PCA dimension size ac-
counting for the 95% of the variability.

# hidden layers PCA dimension
after the BN 17 23 29 35 41 47 53 59

3 17.7 17.3 17.4 17.4 17.6 17.6 17.6 17.7
2 17.5 17.4 17.4 17.3 17.4 17.4 17.5 17.8
1 17.8 17.3 17.3 17.4 17.4 17.5 17.5 17.6
0 18.0 17.9 17.7 17.8 17.8 17.9 17.9 18.1

5.3. Effect of speaker adaptation

In the following experiments, the effect of CMLLR based
speaker adaptation on the multilingual MLP features is stud-
ied. As can be seen in the 1st, 2nd, and 4th rows of Table 6,
the classical 5-layer context-dependent monolingual BN fea-
tures improved the classical cepstral based system by 20% rela-
tive. The deep structures show significant gain over the 5-layer
BN, and result in 21-28% relative improvement over MFCC.
As the results reported in the 3rd and 5th rows indicate, the
speaker adaptation does not eliminate the effect of multilingual
BN features, but rather intensifies it. In contrast with Table 4,
the speaker adapted 5-layer multilingual CD-BN features al-
ways outperformed the monolingual ones (2nd and 3th rows),
and reduced the error rate by 2% to 5% relative. For Polish and

German the multilingual 5-layer BN resulted in similar or even
better performance than the target deep BN. This effect might
be explained as follows: the multilingual BN output is a lan-
guage independent representation, therefore CMLLR performs
not only speaker, but also language adaptation. Moreover, the
deep structure increased the performance gap between mono-
and multilingual BN features (4nd and 5th rows). The relative
gain is 3%–7% over target BN, and 25%–30% over the MFCC
system. The slight benefit of language-dependent hidden layers
vanished after the CMLLR adaptation.

Table 6: Speaker adapted recognition results on Eval11 cor-
pora of four different languages using target language or
multilingual BN features. The results are in WER.

Language FR EN DE PL
MFCC 21.6 26.4 21.4 15.9

M
L

P
ta

rg
et

s

1500
tied-triphone

states

+BNtarget 17.3 19.7 17.2 12.3
+BNmulti 17.0 19.2 16.3 12.1
+deep BNtarget 16.7 18.8 16.8 12.1
+deep BNmulti 16.2 18.1 15.7 11.7

+lang.dep. hidden layer 16.3 18.2 15.7 11.7

6. Conclusions
A recently introduced multilingual MLP approach was ex-
tensively evaluated to improve LVCSR system for four high-
resourced languages. We have shown through a series of ex-
periments that (1) common, multilingual BN features can be
trained for a set of languages; (2) the gain of multilingual BN
features is superior to monolingual ones even if the available
amount of data is unbalanced between the different languages;
(3) context-dependent targets and deeper structures can improve
the multilingual BN features further; (4) the effect of speaker
adaptation and multilingual BN features is additive. With the
help of multilingual BN features our French, English, German,
and Polish LVCSR systems were improved by 3%, 4%, 7%, 3%
relative over monolingual BN features, and 25%, 31%, 27%,
26% relative compared to the MFCC systems.

Although the multilingual BN outperforms the monolingual
MLP features, there is a hint that further language specific tun-
ning might be due. As a future work, we also intend to investi-
gate the application of the multilingual BN to under-resourced
languages.
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[4] L. Tóth, J. Frankel, G. Gosztolya, and S. King, “Cross-lingual
Portability of MLP-Based Tandem Features–A Case Study for En-
glish and Hungarian,” in Proc. of Interspeech, 2008, pp. 2695–
2698.
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“The language-independent bottleneck features,” in Proc. of IEEE
Workshop on Spoken Language Technology, 2012, pp. 336–341.

[20] H. Hermansky and P. Fousek, “Multi-resolution RASTA filter-
ing for TANDEM-based ASR,” in Proc. of Interspeech, 2005, pp.
361–364.
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