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Abstract

In language classification, measures like perplexity and
Kullback-Leibler divergence are used to compare language
models. While this bears the advantage of isolating the effect
of the language model in speech and language processing prob-
lems, the measures have no clear relation to the corresponding
classification error. In practice, an improvement in terms of per-
plexity does not necessarily correspond to an improvement in
the error rate.

It is well-known that Bayes decision rule is optimal if the
true distribution is used for classification. Since the true distri-
bution is unknown in practice, a model distribution is used in-
stead, introducing suboptimality. We focus on the degradation
introduced by a model distribution, and provide an upper bound
on the error difference between Bayes decision and a model-
based decision rule in terms of the f-Divergence between the
true and model distributions. Simulations are first presented to
reveal a special case of the bound, followed by an analytic proof
of the generalized bound and its tightness. In addition, the con-
ditions that result in the boundary cases will be discussed. Sev-
eral instances of the bound will be verified using simulations,
and the bound will be used to study the effect of the language
model on the classification error.
Index Terms: generalization bounds, language modeling, per-
plexity, confidence measures, f-Divergence, error mismatch.

1. Introduction
Perplexity was introduced in the early days of automatic speech
recognition (ASR) [1, p.137] as a model complexity or branch-
ing factor measure for the recognition task from an information-
theoretic point of view, by considering the recognition prob-
lem as a source-channel decoding problem. Although the term
model complexity gives a notion of the difficulty of the consid-
ered classification task, the actual relation to a relevant evalua-
tion measure is left open. In language modeling across differ-
ent techniques it is often observed that a decrease in perplexity
does not necessarily yield an improvement in classification er-
ror [2, 3, 4]. In this work, the relation between information-
theoretic measures among others and the classification error
will be investigated in more detail. To this end, we introduce
a tight class of bounds on the error mismatch between a Bayes
(true) and a model classifier, benefiting from simulations used
to reveal the existence of the reversed Kullback-Leibler (RKL)
bound and verify its tightness. The RKL bound is generalized
to a class of bounds based on the f-Divergence and an analytic
proof of the generalized bound is presented. The f-Divergence
bounds are further supported by simulations.

The next sections are organized as follows: Section 2 re-
visits related error bounds, and Section 3 introduces the RKL
bound and its generalization, followed by the proof presented in
Section 4. Several examples of the introduced bound are given
in Section 5. Section 6 extends the bound to string classes, and
finally Section 7 concludes the paper.

2. Existing Error Bounds
Assume a statistical classification problem, where a model dis-
tribution q(x, c) of the continuous observations x ∈ X and
classes c ∈ C is used to classify samples of the unknown true
distribution pr(x, c). The Bayes cpr(x) and model cq(x) deci-
sion rules corresponding to the true and model distributions are
defined as:

cpr(x) := argmax
c∈C

{pr(x, c)}, cq(x) := argmax
c∈C

{q(x, c)}.

The quality of the model can be measured by the error mismatch
associated with the decision rules:

∆ :=

∫
pr(x, cpr(x))− pr(x, cq(x))) dx.

Another quality measure is the Kullback-Leibler (KL) diver-
gence or relative entropy:

DKL(pr||q) :=

∫ ∑
c∈C

pr(x, c) log

(
pr(x, c)

q(x, c)

)
dx

which is closely connected to the perplexity difference
PP (pr||q) = exp(DKL(pr||q)).

In the last two decades, efforts were made to clarify the
relation between the Kullback-Leibler divergence and the mis-
match, either directly or as a by-product of other results. In
[5], the Kullback-Leibler divergence was shown to be an up-
per bound on the mismatch, with the intention to derive em-
pirical training criteria. In addition, the more general relation
between the total variational distance V and the mismatch was
introduced:

V :=

∫ ∑
c∈C

|pr(x, c)− q(x, c)|dx ≥ ∆. (1)

In machine learning [6, p.30], the Bretagnolle-Huber bound is
known in the context of density estimation:

∆2 ≤ V 2 ≤ 4(1− exp(−DKL(pr|q)))

Aiming for a refinement of the Pinsker inequality, Vajda and Fe-
dotov et al. [7] respectively introduced the following relations:

log

(
2 + V

2− V

)
− 2V

2− V ≤ DKL(pr||q),

∞∑
i=1

k2ii V
2i ≤ DKL(pr||q) (2)

where ki, i = 1, 2, . . . are the constants of the Taylor expansion.
Unfortunately, these two bounds have no explicit representation
in V .



3. Novel RKL and f -divergence Bounds
In this Section, we introduce a tight error bound on the mis-
match based on the reversed KL divergence DKL(q|pr) (”re-
versed” since pr and q are switched). The bound has the form:

∆2 ≤ 1− exp(−2DKL(q||pr)). (3)
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Figure 1: The proposed RKL bound and simulations in compar-
ison to Bretagnolle-Huber’s, Vajda’s and Fedotov’s bounds.

Figure 1 shows plots of the proposed RKL bound compared
to existing bounds discussed in Section 2. These bounds are
parametrized through DKL(pr||q) due to the symmetry of the
variational distance. The simulations correspond to simulat-
ing the distributions pr(x, c) and q(x, c) using 3 classes and
2 observations. The simulations clearly suggest that the pro-
posed RKL bound is tight, in contrast to previous bounds. Ad-
ditional simulations will be shown in Section 5. The conditions
for the tightness of the bound are derived in the proof provided
in Section 4. The RKL bound can be generalized using the f-
Divergence.
Definition 1 If f : R+ → R is a convex function and f(1) = 0
then

Df (pr||q) :=

∫ ∑
c∈C

q(x, c)f

(
pr(x, c)

q(x, c)

)
dx

is defined as the f-Divergence[8, 9, 11].

Theorem 1 The f-Divergence is lower-bounded by a function
of the mismatch, which implicitly represents an upper bound to
the mismatch as a function of the f-Divergence :

Df (pr||q) ≥ 1

2
(f(1 + ∆) + f(1−∆)).

Equality is obtained with shared class-conditional probabili-
ties,

∀x ∈ X , c ∈ C : q(x|c) = pr(x|c)

and a special choice of priors for any pair of classes c1, c2 ∈ C
with c1 6= c2, and λ ∈ [0.5; 1.0], such that:

pr(c) =

{
λ c = c1
1− λ c = c2
0 otherwise

,

and

q(c) = lim
ε→0+


1
2
− ε c = c1

1
2

+ ε c = c2
0 otherwise

,

or, trivially, with the model distribution set equal to the true
distribution.

As Theorem 1 indicates, the bound is tight for any function f
fulfilling the properties of the f -divergence. Notice, that the
special case of f-Divergence bound in Ineq. (3) can also be de-
rived using another proof based on the results presented in [12].
This proof and a second kind of tight bound will be covered in
another publication.

4. Proof of f -divergence Bound
In this section, a proof of the proposed bound is provided and
the boundary conditions will be discussed. In the following, as-
sume c1, c2 ∈ C are two classes s.t. c1 6= c2 and assume that
∀x ∈ X : cpr(x) 6= cq(x) without loss of generality. The ex-
tension of the proof including the case of Bayes and model deci-
sion rules leading to equal results in subspaces of X is straight-
forward, but needs to be presented in a further publication due
to the lack of space. The proof uses the following properties of
the f-Divergence :
Permutation Let the distributions pr(x, c) := pr(x, πx(c))
and q(x, c) := q(x, πx(c)) be permuted versions of the true and
model distributions s.t. πx(cpr(x)) = c1, πx(c1) = cpr(x),
πx(cq(x)) = c2, πx(c2) = cq(x), and πx(c) = c otherwise.
The permutation neither changes the f-Divergence value nor the
mismatch for the permuted distributions.
Aggregation This is also known as the lumping property [8,
p.32] of the f-Divergence or the log-sum inequality. Consider
the aggregation of two summands of the f-Divergence, with
p1, p2, q1, q2 ∈ IR+, the following inequality applies:

q1f

(
p1
q1

)
+ q2f

(
p2
q2

)
≥ (q1 + q2) · f

(
p1 + p2
q1 + q2

)
.

Jensen According to Jensen’s inequality [10] for a convex func-
tion f , the expectation E fulfills f(E(x)) ≤ E(f(x)).
Proof of Theorem 1: Consider the f-Divergence of the original
pair of distributions q and pr:

Df (pr||q) ≥ Df (pr||q) (Permutation)

=
∑
c

q(c)

∫
q(x|c)f

(
pr(x|c)pr(c)
q(x|c)q(c)

)
dx

(equality, iff q(x|c) = pr(x|c))

≥
∑
c

q(c)f

(∫
q(x|c)pr(x|c)

q(x|c)︸ ︷︷ ︸
=1

pr(c)

q(c)

)
dx

(
Jensen; eq. iff
q(x|c)=pr(x|c)

)
=

∑
c∈{c1,c2}

q(c)f

(
pr(c)

q(c)

)
+

∑
c∈C\{c1,c2}

q(c)f

(
pr(c)

q(c)

)

≥
∑

c∈{c1,c2}

q(c)f

(
pr(c)

q(c)

) (Aggr.; eq. for effective
2-class subspaces

)

+ 2
1− q(c1)− q(c2)

2
f

( 1−pr(c1)−pr(c2)
2

1−q(c1)−q(c2)
2

)
≥βf

(λ
β

)
+ (1− β)f

(1− λ
1− β

) (Aggr.; eq. for effective
2-class subspaces

)
with the definitions:

λ :=
1

2
+
pr(c1)

2
− pr(c2)

2
, β :=

1

2
+
q(c1)

2
− q(c2)

2
,

for which we obtain:

2λ− 1 = λ− (1− λ) = pr(c1)− pr(c2) = ∆ (4)
2β − 1 = β − (1− β) = q(c1)− q(c2).



Using ∆ ≥ 0 and q(c2) − q(c1) ≥ 0, it follows that: β ≤
1
2
≤ λ. Now assume the following definitions:

a := λ · 1− 2β

2λ− 1
≥ 0, b := (1− λ) · 1− 2β

2λ− 1
≥ 0.

Also, note that using the aggregation property yields the follow-
ing inequality:

1

2

(
f(2λ) + f(2[1− λ])

)
≥ f(1) = 0. (5)

Then, the following simplification can be carried out:

Df (pr||q) ≥ βf
(
λ

β

)
+ (1− β)f

(
1− λ
1− β

)
=βf

(
λ

β

)
+ a f(

a

a
)︸ ︷︷ ︸

=0

+(1− β)f

(
1− λ
1− β

)
+ b f(

b

b
)︸ ︷︷ ︸

=0

≥(β + a)f

(
λ+ a

β + a

)
+(1− β + b)f

(
1− λ+ b

1− β + b

)
(Aggregation)

=
2λ−

≤1︷︸︸︷
2β

2λ− 1

1

2

(
f(2λ) + f(2(1− λ))

)
︸ ︷︷ ︸

≥0,cf. ineq. (5)

≥1

2

(
f(2λ) + f(2(1− λ))

)
=

1

2

(
f
(
1 + ∆

)
+ f

(
1−∆

))
(cf. (4))

5. Simulation of f -Divergence Bounds
In this Section, some f-Divergences and their corresponding
bounds are presented. More possible f-Divergences can be
found in [11]. In the following, let u = pr(x, c)/q(x, c).
Kullback-Leibler The Kullback-Leibler divergence is obtained
by setting f(u) = u log u. The associated bound becomes then:

2DKL(pr||q) ≥ (1 + ∆) log(1 + ∆) + (1−∆) log(1−∆)
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Figure 2: Kullback-Leibler Bound.

Reversed Kullback-Leibler The reversed Kullback-Leibler di-
vergence is obtained by setting f(u) = − log u. The associated
bound becomes then:

∆2 ≤ 1− exp(−2DKL(q||pr))

Chi-Squared The distance Dχ2 is obtained by setting f(u) =

u2 − 1. The associated bound becomes then:

∆2 ≤ Dχ2(pr||q) =

∫ ∑
c∈C

pr2(x, c)

q(x, c)
dx− 1
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Figure 3: Chi-Squared Bound.

Hellinger The Hellinger distance is obtained using f(u) =
(
√
u − 1)2 or f(u) = 2(1 −

√
u). The associated bound be-

comes then:

H(pr||q) = Df (pr||q) ≥ 2−
√

1 + ∆−
√

1−∆
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Figure 4: Hellinger Bound.

Vajda divergence Assume the f-Divergence with f(u) =
|u− 1|α and α ≥ 1. The associated bound becomes then:

∆2 ≤ D
2
α
f (pr||q)
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Figure 5: Vajda Bound for f(u) = |u− 1|.

Unfortunately, the bounds derived from the Kullback-
Leibler and the Hellinger distance do not result in a closed-form
expression in terms of ∆, in which case numerical approxima-
tions can be used. The bound derived from the RKL divergence
takes values in [0, 1] and might give a reasonable upper bound
on the mismatch. On the other hand, the bounds derived by the
Chi-Squared and Vajda divergences are not limited to the mis-
match domain, which makes them useless for those cases where
the trivial bound ∆ ≤ 1 is tighter.

The simulations in Figure 2 through 5 were performed by
generating a shared class-conditional and two (true and model)
class prior distributions, where 3 classes and 2 observations
were assumed. The same tendency was confirmed in simula-
tions using more classes and observations. In general, several
million distributions were generated, followed by filtering to
achieve better visualization.

6. Language Modeling Example
The pursuit to bound the mismatch in this work can be applied
to quantify the language model effect in the string case, where
sequences of discrete random variables xN1 and cN1 of length
N are used as observations and classes, respectively. A pos-
sible real-world example on such a string case decision prob-
lem is Part-of-speech (POS) tagging, where xN1 is the word se-
quence, and cN1 is the POS tag sequence. Assume the true and
model distributions to have respectively higher- and lower-order
n-gram language models. The lower-order language model is
considered a model of the true higher-order language model,
and linking the two is done by deriving the former from the
latter. For instance, if we seek to relate two recognition sys-
tems having bigram and unigram language models, we define
the position-dependent derived unigram as the marginalization
of the language model distribution modeled according to the bi-
gram assumption as follows:

qn(c) =
∑

cN1 :cn=c

N∏
i=1

pr(ci|ci−1)

Studying the mismatch in this case would yield insights as to the
extent of improvement possible when replacing a unigram with
its corresponding bigram language model. Assuming the two
systems have a shared class-conditional model, so as to isolate
the effect of the language model, the errors corresponding to the

bigram and unigram systems are given respectively as:

E = 1−
∑
xN1

max
cN1

{
N∏
i=1

pr(ci|ci−1)pri(xi|ci)

}

Ē = 1−
∑
xN1

N∏
i=1

max
ci
{qi(ci)pri(xi|ci)}

and the mismatch in this case would be ∆ = E − Ē. Figure 6
compares simulation results against the RKL bound for strings,
where the RKL is given by:

DKL(q(cN1 )||pr(cN1 )) =
∑
cN1

N∏
i=1

qi(ci) log

( N∏
n=1

qn(cn)

q(cn|cn−1)

)

The simulations confirm that the bound holds, while the gap
between simulation points and the bound arises due to the in-
troduced dependence between the two language models, which
is an additional constraint not used in the previous sections.
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Figure 6: Bigram vs. derived unigram simulations for strings of
length 4 (star-shapes) and 6 (dots) for 2 classes and 2 observa-
tions, along with the RKL bound shown as the blue curve.

7. Conclusion
A novel category of bounds based on f-Divergences was intro-
duced, seeking to relate the error mismatch between Bayes and
model-based statistical recognition systems. An analytic proof
of the bounds was presented and supported by simulations indi-
cating their validity and tightness. Furthermore, the RKL bound
was used to study the effect of the language model on the clas-
sification error in string systems.
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